\(D=\sqrt{2+1-2\sqrt{2}}-\sqrt{2+1+2\sqrt{2}}\)
\(D=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(D=\sqrt{2}-1-\left(\sqrt{2}+1\right)\)
\(D=\sqrt{2}-1-\sqrt{2}-1\)
\(D=-2\)
CÂU THỨ 2 NHA !!!!!!
XÉT: \(2VT=2a\sqrt{b-1}+2b\sqrt{a-1}\)
=> \(2VT=a.2.\sqrt{1}.\sqrt{b-1}+b.2.\sqrt{1}.\sqrt{a-1}\)
TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:
=> \(2VT\le a\left(1+b-1\right)+b\left(1+a-1\right)\)
=> \(2VT\le ab+ab\)
=> \(2VT\le2ab\)
=> \(VT\le ab\)
=> TA CÓ ĐIỀU PHẢI CHỨNG MINH.
\(D=\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}-\sqrt{2+2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|-\left|\sqrt{2}+1\right|=\sqrt{2}-1-1-\sqrt{2}=-2\)
câu 2 (cách khác)
ta có (**) \(2\sqrt{ab}\le a+b\Leftrightarrow0\le\left(\sqrt{a}-\sqrt{b}\right)^2\)(bđt đúng với a>=0; b>=0)
áp dụng bđt (**)
\(\sqrt{b-1}=\sqrt{1\left(b-1\right)}\le\frac{b-1+1}{2}=\frac{b}{2}\)(do b-1>=0)
\(\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)(do b>0; a-1>=0)
vậy \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)