Xét tứ giác ABDC có
AC//BD
AC=BD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: DA=BC
Xét tứ giác ABDC có
AC//BD
AC=BD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: DA=BC
Bài 8: Cho đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ tia Ax và By cùng vuông góc với AB.
Trên tia Ax, By lần lượt lấy hai điểm C, D sao cho AC = BD.
a) Chứng minh AD = BC. b) Chứng minh AD // BC.
c) Gọi O là trung điểm của AB. Trên BC lấy điểm E, trên AD lấy điểm F sao cho CE = DF. Chứng minh O
là trung điểm của EF.
Cho đoạn thẳng AB, trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax và By. Trên Ax và By lần lượt lấy các điểm C và D sao cho AC=\(\frac{1}{2}\)BD. Vẽ BE vuông góc với AD và gọi F là trung điểm ED. Chứng minh CF vuông góc BF.
cho đoạn thẳng AB có O là trung điểm. Trên hai nửa mặt phẳng đối nhau bờ AB các tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD
1) C/m: O là trung điểm của CD
2) trên cạnh BC lấy điểm E và trên cạnh AD lấy điểm F sao cho BE = AF. C/m O là trung điểm của EF
Cho đoạn thẳng AB và điểm M là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB. Lấy điểm C , D lần lượt trên Ax , By sao cho góc CMD=90 độ .tia CM cắt tia đối của tia By tại E . kẻ MH vuông góc CD (H thuộc CD )
CMR
a) tam giác AMC= tam giác BME , tam giác CMD= tam giác EMD
b) CD=AC+BD
c) M là giao điểm của các đường trung trực của doạn thẳng AH, HB
giúp mình với mn mình cần gấp .
Cho đoạn thẳng AB và điểm C nằm giữa A và B (C không trùng với trung điểm của AB). Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ hai tia Ax vuông góc với AB và By vuông góc với AB. Trên tia Ax lấy hai điểm M, M'; trên tia By lấy hai điểm N, N' sao cho AM = BC, BN = AC, AM' = AC, BN' = BC. Chứng minh rằng:
a) AN = BM', AN' = BM, MC = NC
b) MN' và M'N cắt nhau tại điểm O là trung điểm của AB
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ hai tia Ax và By lần lượt vuông góc với AB tại A và B. Gọi O là trung điểm của đoạn thẳng AB. Trên tia Ax lấy điểm C và trên tia By lấy điểm D sao cho góc COD=90 độ.
a) Chúng minh rằng AC+BD=CD
b) Chứng minh rằng AC.BC=AB^2/4
Cho đoạn thẳng AB = 7cm. Lấy điểm C thuộc đoạn thẳng AB sao cho AC = 2cm. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax và By cùng vuông góc với AB. Lấy điểm D thuộc tia Ax, điểm E thuộc tia By sao cho: AD = 10 cm, BE = 1 cm
a) Tính độ dài các đoạn thẳng DC, CE
b) Chứng minh rằng: DC ⊥ CE.
mik cần gấp
cho AB. M là trung điểm của đoạn thẳng AB trên hai nửa mặt phẳng đối nhau có bờ là AB kẻ các tia Ax và By song song với nhau lấy trên Ax một điểm c, trên By một điểm D sao cho AC=BD
a/ chứng minh C, M, D thẳng hàng
b/ kẻ AH vuông góc với MC,, BK vuông góc với MD chứng minh AH =BK
Cho đoạn thẳng AB. Trên cùng một nữa mặt phẳng bờ AB, vẽ hai tia Ax, By cùng vuông góc với AB. Trên hai tia Ax, By lần lượt lấy các điểm C, D sao cho AC = 1/2 BD. Vẽ BE vuông góc với AD (E thuộc AD) và F là trung điểm của ED. CM Cf vuông góc với BF.