Cho đoạn thẳng AB và điểm C di dộng trên đó. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các nửa đường tròn có các đường kính AB,AC,BC. Xác định vị trí của điểm C để diện tích cắt bởi các nửa đường tròn có GTLN.
Cho đoạn thẳng AB, điểm C nằm giữa AB. Vẽ về một phía của AB các nửa đường tròn có đường kính theo thứ tự là AB, AC, BC. Đường vuông góc với AB tại C cắt nửa đường tròn lớn hơn tại D. DA, DB cắt các nửa đường tròn có đường kính AC, BC theo thứ tự tại M, N. Điểm C ở vị trí nào trên AB thì MN có độ dài lớn nhất.
Cho nửa đường tròn đường kính AB . điểm C di động trên nửa đường tròn . Kéo dài AC 1 đoạn CF = BC . Tìm tập hợp điểm F , xác định Vị trí của C trên nửa đường tròn sao cho chu vi tam giác ABC max
Cho đường tròn tâm O, bán kính R. AB là 1 dây cung cố định và AB = R nhân căn 3. M là trung điểm của AB. C là điểm chuyển động trên cung AB. I là trung điểm của AC. H là hình chiếu của I trên BC
a. Cmr: Điểm I thuộc đường tròn bán kính OB
b. Tính góc AOB và độ dài đoạn thẳng OM theo R
c. Cmr: I thuộc 1 đường cố định
d. Cmr: Đường thẳng IH đi qua 1 điểm cố định
e. Cmr: H thuộc 1 đường thẳng cố định
f. Xác định vị trí điểm C sao cho diện tích OBCA lớn nhất
Cho đường tròn (O;R), đường kính AB. Lấy điểm M trên đoạn thẳng OA, đường thẳng qua M vuông góc với AB cắt đường tròn (O) tại C. Gọi D là điểm chính giữa của cung AB(C và D nằm khác phía đối với AB). Xác định vị trí của điểm M để diện tích tam giác MCD lớn nhất.
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H.
a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.
b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O).
c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.
2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC.
a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định.
b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.
Mọi người giúp em với ạ.
Cho điểm C thuộc đoạn AB, . Vẽ về môt phía của AB các nửa đường tròn có đường kính theo thứ tự là AC, AB. Tính bán kính của đường tròn (I) tiếp xúc với các nửa đường tròn trên và tiếp xúc với đoạn thẳng AB
Cho đoạn thẳng AB, điểm C nằm giữa AB. Vẽ về một phía của AB các nửa đường tròn có đường kính theo thứ tự là AB, AC, BC. Đường vuông góc với AB tại C cắt nửa đường tròn lớn hơn tại D. DA, DB cắt các nửa đường tròn có đường kính AC, BC theo thứ tự tại M, N. Chứng minh rằng MN là tiếp tuyến chung của các nửa đường tròn có đường kính AC, BC
Bài toán:. Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F
a.Chứng minh tứ giác MECF là hình chữ nhật và È là tiếp tuyến chung của (I) và (K)
b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.
c. Khi C khác O , đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN
d. Chứng minh 3 điểm: N, E, F thẳng hàng
Dùng kiến thức kì 1 ko dùng nội tiếp ai giúp em