a: 2 vecto IA+vecto IB=vecto 0
=>2 vecto IA=-vecto IB
=>I nằm giữa A và B và IA=2IB
=>vecto AI=2/3*vecto AB
b: 2/5vecto MA+3/5vecto MB
=2/5vecto MI+2/5vecto IA+3/5vecto MI+3/5vecto IB
=vetco MI+1/5(2 vecto IA+3 vecto IB)
=vecto MI
a: 2 vecto IA+vecto IB=vecto 0
=>2 vecto IA=-vecto IB
=>I nằm giữa A và B và IA=2IB
=>vecto AI=2/3*vecto AB
b: 2/5vecto MA+3/5vecto MB
=2/5vecto MI+2/5vecto IA+3/5vecto MI+3/5vecto IB
=vetco MI+1/5(2 vecto IA+3 vecto IB)
=vecto MI
cho tam giác ABC. Các điểm M và N thỏa mãn : vecto MN= 2 vecto MA- vecto MB+ vecto MC
a) tìm điểm I sao cho 2 vecto IA - vecto IB + vecto IC = vecto 0
b) CM : đường thẳng MN luôn đi qua một điểm cố định
c) Gọi P là trung điểm BN . CM đường thẳng MP luôn đi qua một điểm cố định
Cho tam giác ABC và đường thẳng d a) tìm điểm I để Vecto IA+IB+3IC =vecto 0. b) Tìm trên d điểm M sao cho |Vecto MA+MB+3MC| nhỏ nhất giúp mk với mk đang cần gấp !!!
Cho tam giác ABC có M là trung điểm của AC, I 1.là trung điểm của BM. Chứng minh: Vecto IB+ vecto IC+ vecto IA= vecto IM
2. Trong xoy cho A(-3;-5),C(-1;-5). Tìm tọa độ giao điểm I của đường thẳng AC với trục hoành Giúp mình với ạ. Mình đang cần gấp
Cho tứ giác ABCD, I và J là trung điểm của AB và CD,O là trung điểm I. M là điểm bất kỳ.Chứng minh: a) vecto OA + vecto OB + vecto OC + vecto OD = vecto O b) vecto MA + vecto MB + vecto MC + vecto MD = 4MO c) vecto AC + vecto BD = vecto 2IJ
Cho tam giác ABC . Tìm tập hợp điểm M thỏa mãn :
a) |vecto MA+ vecto MC | = |vecto MA- vecto MB|
b) |2 vecto MA + vecto MB | = |4 vecto MB - vecto MC |
c) |4 vecto MA - vecto MB + vecto MC |=|2 vecto MA - vecto MB - vecto MC |
Cảm ơn trc , ai đó có thể giúp mình nhanh được không ạ , tại mình đang cần gấp :)))
Cho tam giác ABC . Dựng các điểm I , J , K thỏa mãn điều kiện sau :
a) Vecto IA - 3 vecto IB = vecto AC
b) vecto JA - vecto JB + 2 vecto JC = 0
c) vecto KA + 2 vecto KB = 2 vecto CB
Mn giúp em với tại em đang cần gấp , tks :))
cho tam gaics ABC trên cạnh AB,AC lần lượt lấy các điểm M,N sao cho MA/MB=x; NA/NC=y. I = CM giao với BN. CMR vecto AI=x(vecto IB)+y(vecto IC)
to tứ giác ABCD gọi M, N lần lượt là trung điểm của AB , CD . Trên đoạn thẳng MN lấy 2 điểm của O , I sao cho vecto MO = vecto OI = vecto IN . Tính tổng vecto OA + vecto IB + vecto IC + vecto OD
Cho tam giác ABC . Gọi M , N , P là 3 điểm thoả mãn vecto MC = 1/3 vecto MB , vecto NA + 3 vecto NC = 0 , vecto PA + vecto PB = 0 a ) Biểu diễn vecto MP , vecto NP theo hai vecto AB và AC b ) Chứng minh 3 điểm M , N, P thẳng hàng