Đáp án C
y ' = 4 x 3 − 8 x = 4 x x 2 − 2 ; y ' = 0 ⇔ x = 0 x = ± 2
Bảng biến thiên:
Từ BBT ta thấy, đồ thị hàm số có ba điểm cực trị và chỉ có một điểm cực đại. Trục đối xứng là trục tung. Không có tâm đối xứng.
Đáp án C
y ' = 4 x 3 − 8 x = 4 x x 2 − 2 ; y ' = 0 ⇔ x = 0 x = ± 2
Bảng biến thiên:
Từ BBT ta thấy, đồ thị hàm số có ba điểm cực trị và chỉ có một điểm cực đại. Trục đối xứng là trục tung. Không có tâm đối xứng.
Cho hàm số y = x − 1 x − 3 . Xét các mệnh đề sau:
(1) Hàm số nghịch biến trên D = ℝ \ 3
(2) Đồ thị hàm số có một tiệm cận đứng là x=1, tiệm cận ngang là y=3.
(3) Hàm số đã cho không có cực trị
(4) Đồ thị hàm số nhận giao điểm I(3;1) của hai đường tiệm cận làm tâm đối xứng.
Chọn các mệnh đề đúng ?
A. (1), (3), (4)
B. (3), (4)
C. (2), (3), (4)
D. (1), (4)
Cho các mệnh đề sau
I. Đồ thị hàm số y = ax + b c x + d a c ≠ 0 , a d − c b ≠ 0 nhận giao điểm hai đường tiệm cận làm tâm đối xứng
II. Số điểm cực trị tối đa của hàm số trùng phương là ba
III. Bất kỳ đồ thị hàm số nào cũng đều phải cắt trục tung và trục hoành
IV. Số giao điểm của hai đồ thị hàm số y = f x và y = g x là số nghiệm phân biệt của phương trình: f x = g x
Trong các mệnh đề trên mệnh đề đúng là
A. (I),(III)
B. (II),(III)
C. (I) (II),(III)
D. (I) (II),(IV)
Cho hàm số y = ax + b x + c có bảng biến thiên dưới đây:\
Cho các mệnh đề:
(1) Hàm số đồng biến trên toàn tập xác định.
(2) Hệ số a = 2, c = 2
(3) Nếu y ' = 3 x + 2 2 thì b = 1
(4) Đồ thị hàm số nhận giao của 2 đường tiệm cận I(-2;2) là tâm đối xứng.
Có bao nhiêu mệnh đề sai?
A. 4
B. 3
C. 1
D. 0
Cho hàm số y = f(x) có đồ thị y = f ' (x) cắt trục Ox tại ba điểm có hoành độ a<b<c như hình vẽ
Xét 4 mệnh đề sau
1 : f c > f a > f b 2 : f c > f b > f a 3 : f a > f b > f c 4 : f a > f b
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng
A. 4
B. 1
C. 2
D. 3
Tìm số mệnh đề sai trong những mệnh đề sau
(1). Nếu hàm số f x đạt cực đại tại x0 thì x0 được gọi là điểm cực đại của hàm số.
(2). Giá trị cực đại (giá trị cực tiểu) của hàm số còn được gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.
(3). Cho hàm số f x là hàm số bậc 3, nếu hàm số có cực trị thì đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt.
(4). Cho hàm số f x là hàm số bậc 3, nếu hàm số cắt trục Ox tại duy nhất một điểm thì hàm số không có cực trị.
A. 2
B. 3
C. 1
D. 4
Cho hai hàm số y = e x và y = ln x . Xét các mệnh đề sau
(I) Đồ thị hai hàm số đối xứng qua đường thẳng y=x
(II) Tập xác định của hai hàm số trên là R
(III) Đồ thị hai hàm số cắt nhau tại đúng một điểm.
(IV) Hai hàm số đều đồng biến trên tập xác định của nó.
Có bao nhiêu mệnh đề sai trong các mệnh đề trên?
A. 2
B. 3
C. 1
D. 4
Cho hàm số y = f(x) xác định trên D = − 1 ; + ∞ \ 1 . Dưới đây là một phần đồ thị của y = f(x)
Hỏi trong các mệnh đề sau, có bao nhiêu mệnh đề đúng:
(I) Số điểm cực đại của hàm số trên tập xác định là 1.
(II) Hàm số có cực tiểu là -2 tại x = 1
(III) Hàm số đạt cực đại tại x = 2
(IV) Hàm số đạt cực đại tại x = -1
A. 0
B. 1
C. 2
D. 3
Cho a là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau:
1. Hàm số y= l o g a x có tập xác định là D= ( 0 ; + ∞ ) .
2. Hàm số y= l o g a x là hàm đơn điệu trên khoảng ( 0 ; + ∞ ) .
3. Đồ thị hàm số y= l o g a x và đồ thị hàm số y = a x đối xứng nhau qua đường thẳng y= x.
4. Đồ thị hàm số y= l o g a x nhận Ox là một tiệm cận
A. 4
B. 1
C. 3
D. 2
Cho hàm số y = f ( x ) liên tục trên ℝ và có đồ thị như hình vẽ bên. Xét 4 mệnh đề sau
(1) Hàm số y = f ( x ) đạt cực đại tại x 0 = 0
(2) Hàm số y = f ( x ) có ba cực trị.
(3) Phương trình y = f ( x ) có đúng ba nghiệm phân biệt
(4) Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Hỏi trong 4 mệnh đề trên, có bao nhiêu mệnh đề đúng?
A. 1
B. 3
C. 4
D. 2
Cho hàm số y = f(x) có đồ thị của hàm số y = f '(x) được cho như hình bên và các mệnh đề sau:
(1). Hàm số y = f(x) đồng biến trên khoảng (-1;0)
(2). Hàm số y = f(x) nghịch biến trên khoảng (1;2)
(3). Hàm số y = f(x) đồng biến trên khoảng (3;5)
(4). Hàm số y = f(x) có hai điểm cực đại và một điểm cực tiểu.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2