cho ΔMNP vuông tại M có MN<MP. Lấy Q tùy ỳ trên cạnh MP. dựng đường tròn đường kính PQ cắt NP tại H và NQ tại K
CM: MNPK, MNHQ, KPHQ nội tiếp
Độ dài cung 300 của một đường tròn bán kính 4 cm bằng:
A.\(\dfrac{4}{3}\pi cm\) B.\(\dfrac{2}{3}\pi cm\) C.\(\dfrac{1}{3}\pi cm\) D.\(\dfrac{8}{3}\pi cm\)
Giải thích giúp em tại sao với ạ
Nếu chu vi đường tròn tăng thêm 10cm thì bán kính đường tròn tăng thêm:
A.\(\dfrac{\pi}{5}cm\) B.\(\dfrac{1}{5\pi}cm\) C.\(\dfrac{5}{\pi}cm\) D.5\(\pi cm\)
(Giải thích giúp em vì sao chọn thế ạ)
Cho đường tròn tâm (O) bán kính R và đường thẳng d cắt O tại 2 điểm A, B. Từ một điểm M thuộc đường thẳng d nằm ngoài đường tròn (O), kẻ các tiếp tuyến MN và MP với đường tròn đã cho ( N, P là các tiếp điểm).
a,Chứng minh tứ giác ONMP là tứ giác nội tiếp
b, Chứng minh góc NMO= góc NPO
c, Chứng minh \(^{MN^2}\)=MA.MB
Mình đang cần rất gấp, nhờ mn giúp mình vs ạ, cảm ơn mn nhiều lắm
Cho đường tròn tâm (O) bán kính R và đường thẳng d cắt O tại 2 điểm A, B. Từ một điểm M thuộc đường thẳng d nằm ngoài đường tròn (O), kẻ các tiếp tuyến MN và MP với đường tròn đã cho ( N, P là các tiếp điểm).
a,Chứng minh tứ giác ONMP là tứ giác nội tiếp
b, Chứng minh góc NMO= góc NPO
bài 1: Cho tam giác MNP cân tại M có đáy nhỏ hơn cạnh bên. Tam giác nội tiếp (O) bán kính R. Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP, MN tại E và D. Hỏi:
a, chứng minh NE bình = EP. EM
b, Chứng minh tứ giác DEPN nội tiếp.
bài 2: Cho (O), lấy A không thuộc đường tròn. Đường thẳng AO giao với (O) tại B, C (AB < AC). Qua A vẽ đường thẳng không đi qua O cắt (O) tại 2 điểm D và E (AD < AE). Đường vuông góc với AB tại A cắt đường thẳng CE tại F.
a, Chứng minh tứ giác ABEF nội tiếp
b, Gọi M là giao điểm thứ 2 của FB với (O). Chứng minh DM vuông góc AC.
c, CE . CF + AD . AE = AC bình
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho▲ABC có 3 góc nhọn ( AB < AC) nội tiếp đường tròn (O;R). Vẽ AH vuông góc với BC. Từ H, kẻ HM ⊥ AB và HN ⊥ AC (H ∈ BC, M ∈ AB, N ∈ AC). Vẽ đường kính AE cắt MN tại I, tia MN cắt (O;R) tại K. Chứng minh: a) Tứ giác AMHN nội tiếp b) AM.AB=AN.AC c) AE ⊥ MN d)C/M: AH=AK
cần gấp ạ , giúp câu d với ạCho tam giác ABC vuông tại A. Đường tròn (O) đường kính AB cắt BC tại D. Kẻ dây AF vuông góc với OC tại E. Chứng minh tứ giác AEDC nội tiếp được đường tròn. Xác định tâm N và bán kính đường tròn này.
Vẽ hình luôn giúp em với ạ😭