a: Xét ΔMIN vuông tại I và ΔMIP vuông tại I có
MN=MP
MI chung
=>ΔMIN=ΔMIP
b: Xét ΔMEI vuông tại E và ΔMFI vuông tại F có
MI chung
góc EMI=góc FMI
=>ΔMEI=ΔMFI
=>ME=MF
IN=IP=6/2=3cm
=>MI=4cm
a: Xét ΔMIN vuông tại I và ΔMIP vuông tại I có
MN=MP
MI chung
=>ΔMIN=ΔMIP
b: Xét ΔMEI vuông tại E và ΔMFI vuông tại F có
MI chung
góc EMI=góc FMI
=>ΔMEI=ΔMFI
=>ME=MF
IN=IP=6/2=3cm
=>MI=4cm
cho tam giác MNP cân tại M coa MN=MP=13cm, NP=10cm. kẻ MI vuông góc với NP (IϵNP)
A, chứng minh rằng: IN=IP
B,tính độ dài MI
C, kẻ IH vuông góc với MN (HϵMN), IK vuông góc với MP (KϵMP).chứng minh IH=IK
Cho tam giác MNP cân tại M có MN =MP 8cm , NP=10cm.
Kẻ MI vuông góc với NP (I thuộc NP)
a chứng minh rằng: IB =IC
b. Kẻ IH vuông góc với MN (H thuộc MN),IK vuông với MP (K thuộc MP). Chứng minh IH=IK
Cho tam giác MNP cân tại A có MN = MP = 5 cm ; NP= 8cm
Kẻ MH vuông góc với NP (H thuộc NP).
a. Chứng minh HN = HP và
b. Tính độ dài MH
c. Kẻ HD vuông góc MN (D thuộc MN) Kẻ HE vuông góc MP (E thuộc MP).Chứng minh DHDE là tam giác cân.
Cho tam giác MNP có MN<MP . Kẻ phân giác MQ(Q E NP) . Trên cạnh MP lấy điểm H sao cho MH= MN
a, gọi I là giao điểm của MQ và NH . Chứng minh MI vuông góc với NH
b, kẻ QD vuông góc với MN , Q E MP . Chứng minh DE //HN
Hộ mik với ạ mik cần gấp cảm ơn ạ
Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740
. Tính góc ABC
d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300
. Vẽ phân giác AD ( D BC). Vẽ DE
vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều
Cho tam giác MNP cân tại M, MI là đường phân giác (I thuộc NP) a) chứng minh tam giác MIN=tam giác MIP b) kẻ EI vuông góc MN tại E , IF vuông góc MP tại F .chứng minh tam giác MEF cân
Cho tam giác MNP có góc N= 90°, tia phân giác gócM cắt NP tại I ,qua I kẻ IE vuông góc MP
a, chứng minh IN=IE , MN=ME
b, Gọi F là giao điểm của IE và MN. Chứng minh IF=IP
c, Chứng minh tam giác MFP cân và MI vuông góc FP
d, Chứng minh NE// FP
Cho DMNP vuông tại M,. Tia phân giác của góc N cắt MP tại Q. Kẻ QK vuông góc với NP tại K.
a) Chứng minh: DMNQ = DKNQ.
b) Cho NP = 10 cm và MN = 5cm. Tính độ dài cạnh MP.
c) Chứng minh: DMNK cân.
d) Cho P̂=30°. Chứng minh: ΔMNK là tam giác đều.
e) Trên tia đối của tia MN lấy điểm I sao cho MI = KP. Gọi A là trung điểm của IP. Chứng minh N, Q, A thẳng hàng.