Trong không gian với hệ tọa độ Oxyz, cho điểm M 3 ; − 1 ; − 2 và mặt phẳng P : 3 x − y + 2 z + 4 = 0. Phương trình nào dưới đây là phương trình mặt phẳng đi qua M và song song với (P)?
A. Q : 3 x − y + 2 z + 6 = 0
B. Q : 3 x − y − 2 z − 6 = 0
C. Q : 3 x − y + 2 z − 6 = 0
D. Q : 3 x + y − 2 z − 14 = 0
Trong không gian Oxyz, cho điểm A(1;1;-2) và hai mặt phẳng (P): 3x - y +1 = 0, (Q): x - 2z - 3 = 0. Phương trình đường thẳng d qua điểm A đồng thời song song với cả hai mặt phẳng (P), (Q) là
A. x = 2 + t y = − 6 + t z = 1 − 2 t .
B. x = 5 + 2 t y = 13 + 6 t z = t .
C. x = 1 + 2 t y = 1 − 6 t z = − 2 + t .
D. x = 2 + t y = 6 + t z = 1 − 2 t .
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (α) đi qua hai điểm A(3;1;-1), B(2;-1;4) và vuông góc với mặt phẳng ( β ) : 3 x + y - 2 z + 5 = 0 là:
A. x+13y+5z+5=0
B. x+13y-5z+5=0
C. x-13y+5z+5=0
D. x-13y-5z+5=0
Trong không gian với trục tọa độ Oxyz, cho đường thẳng Δ : x − 1 2 = y − 1 = z + 2 3 và mặt phẳng ( α ) : x − 2 y + 2 z − 3 = 0 . Đường thẳng đi qua O, vuông góc với ∆ và song song với mặt phẳng ( α ) có phương trình
A. x 4 = y − 1 = z − 3
B. x 4 = y 1 = z − 3
C. x − 1 4 = y − 1 = z − 3
D. x 4 = y 1 = z − 1 − 3
Trong không gian với hệ tọa độ Oxyz cho điểm M 1 ; 0 ; 6 và mặt phẳng α có phương trình là x + 2 y + 2 z − 1 = 0 . Viết phương trình mặt phẳng β đi qua M và song song với α
A. β : x + 2 y + 2 z + 13 = 0.
B. β : x + 2 y + 2 z − 15 = 0.
C. β : x + 2 y + 2 z − 13 = 0.
D. β : x + 2 y + 2 z + 15 = 0.
Trong không gian Oxyz, cho hai mặt phẳng P : 3 x − y − 3 z + 2 = 0 và Q : − 4 x + y + 2 z + 1 = 0. Phương trình đường thẳng đi qua gốc tọa độ O và song song với 2 đường thẳng (P) và (Q) là:
A. x 1 = y − 1 = z 6 .
B. x 1 = y − 6 = z − 1 .
C. x 1 = y 1 = z 6 .
D. x 1 = y 6 = z − 1 .
Cho mặt phẳng P : x - 2 y + z + 5 = 0 , Viết phương trình mặt phẳng (α) vuông góc với mặt phẳng (P) và chứa đường thẳng d là giao của hai mặt phẳng P 1 : x - 2 z = 0 và P 2 : 3 x - 2 y + z - 3 = 0
A. (α): 11x-2y-15z+3=0
B. (α): 11x+2y-15z-3=0
C. (α): 11x-2y+15z-3=0
D. (α): 11x-2y-15z-3=0
Trong không gian với trục tọa độ Oxyz, cho đường thẳng Δ : x − 1 2 = y − 1 = z + 2 3 và mặt phẳng α : x − 2 y + 2 z − 3 = 0. Đường thẳng đi qua O, vuông góc với ∆ và song song với mặt phẳng α có phương trình
A. x 4 = y − 1 = z − 3 .
B. x 4 = y 1 = z − 3 .
C. x − 1 4 = y − 1 = z − 3 .
D. x 4 = y 1 = z − 1 − 3 .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x+y-2z-2 = 0 và đường thẳng có phương trình d : x + a 1 = y + 2 2 = z + 3 2 và điểm A(1/2;1;1) Gọi ∆ là đường thẳng nằm trong mặt phẳng (α) , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/3
B. 7/2
C. 21 2
D. 3/2