Cho điểm A nằm ngoài đường tròn tâm 0. Vẽ AB và AC là hai tiếp tuyến của (0) tại B và C. Qua A vẽ cát
tuyến ADE với đường tròn (0) (D nằm giữa A và E; tia AE nằm giữa 2 tia AB và AO ).
a. Chứng minh : AB²= AD.AE và OA vuông góc BC
b. Gọi H là giao điểm của OA và BC. Chứng minh : AD.AE = AH.AO và tứ giác OHDE nội tiếp
c. Tiếp tuyến tại D và E của (0) cắt nhau ở K.Chứng minh : K; B;C thẳng hàng
a.XétΔABD và Δ ABE
BAE chung
ABD= AEB(cùng chắn cung BD)
=> ΔABD ~ Δ AEB(g-g)
\(\dfrac{AB}{AD}\)=\(\dfrac{AE}{AB}\)
=> AB.AB=AD.AE
=> AB²= AD.AE
OBA=900(AB là tiếp tuyến)
OCA=900(AC là tiếp tuyến)
=>OA là đường trung trực của BC
=>OA vuông góc BC tại H
b. Ta có Δ OBA vuông tại B,đường cao BH
AB²=AH.AO (hệ thức lượng)
mà AB²=AD.AE(cmt)
=>AD.AE=AH.AO
Xét Δ ADH và Δ AEO
EAO chung
\(\dfrac{AD}{AO}\)=\(\dfrac{AH}{AE}\)(cmt)
=>Δ ADH ~ Δ AEO (c-g-c)
=>\(\widehat{AEO}\)=\(\widehat{AHD}\)
=>tứ giác OHDE nội tiếp( góc ngoài tứ giác nt= góc trong đối đỉnh)