Cho tam giác ABC có trực tâm H, nội tiếp đường tròn (O), BC cố định, I là trung điểm của BC. Khi A di động trên (O) thì quỹ tích H là đường tròn (O’) là ảnh của O qua phép tịnh tiến theo vecto v → bằng:
A. I H →
B. A O →
C. 2 O I →
D. 1 / 2 B C →
Cho 2 điểm phân biệt B,C cố định ( BC không phải là đường kính) trên đường tròn (O), điểm A di động trên (O), M là trung điểm BC, H là trực tâm tam giác ABC. Khi A di chuyển trên đường tròn (O) thì H di chuyển trên đường tròn (O;) là ảnh của (O) qua phép tịnh tiến theo u → . Khi đó bằng
A. B C →
B. O B →
C. 2 O M →
D. 2 O C →
Cho tam giác ABC nội tiếp đường tròn (O). BC cố định, I là trung điểm BC , G là trọng tâm của tam giác ABC. Khi A di động trên (O) thì G di động trên đường tròn (O’) là ảnh của (O) qua phép vị tự nào sau đây?
A. phép vị tự tâm A tỉ số k = 2/3
B. phép vị tự tâm A tỉ số k = -2/3
C. phép vị tự tâm I tỉ số k = 1/3
D. phép vị tự tâm I tỉ số k = -1/3
Trong mặt phẳng Oxy cho điểm I(1;1) và đường tròn tâm I bán kính 2. Viết phương trình đường tròn là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O, góc 45 o và phép vị tự tâm O, tỉ số căn 2 .
Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.
a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.
b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥ (SBC).
c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.
d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.
e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.
f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.
Cho hai điểm B,C cố định trên đường tròn (O,R) và A thay đổi trên đường tròn đó, BD là đường kính. Khi đó quỹ tích trực tâm H của ∆ A B C là.
A. Đoạn thẳng nối từ A tới chân đường cao thuộc BC của ∆ A B C .
B. Cung tròn của đường tròn đường kính BC.
C. Đường tròn tâm O' bán kính R là ảnh của (O,R) qua T H A ¯ .
D. Đường tròn tâm O' bán kính R là ảnh của (O/R) qua T D C ¯ .
Cho đường tròn (O,5) và a là điểm cố định trên đường tròn Gọi B C D là hai điểm di động trên đường tròn sao cho đoạn BC có độ dài không đổi bằng 8. gọi M là trung điểm của BC và G là trọng tâm tam giác ABC. khi B,C thay đổi trên đường tròn (O,5) thì tập hợp các điểm G là:
A. đường tròn có bán kính bằng 3
B. đường tròn có bán kính bằng 2
C. đường tròn có bán kính bằng 4
D. đường tròn có bán kính bằng 5
em đang cần gấp. cảm ơn ạ
Cho hình vuông ABCD, gọi O là giao điểm của AC và BD. Tìm ảnh của các điểm A, B, O qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc 90 ° và phép đối xứng qua đường BD (h.1.41).
∆ABC có 2 điểm B, C cố định, A chạy trên đường tròn (C) tâm O bán kính R. Biết (C) không qua B, C. Gọi M là trung điểm của BC, G là trọng tâm ∆ABC. Khi A chạy trên (C) thì G chạy trên đường tròn (C’) là ảnh của (C) qua phép biến hình nào sau đây?
A. Phép tịnh tiến theo vectơ A G →
B. Phép vị tự tâm A tỉ số 2 3 .
C. Phép vị tự tâm M tỉ số 1 3
D. Phép tịnh tiến theo vectơ M G → .