Đặt \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\)
=>x=15k; y=20k; z=24k
\(A=\dfrac{2\cdot15k+3\cdot20k+4\cdot24k}{3\cdot15k+4\cdot20k+2\cdot24k}=\dfrac{186}{173}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=\dfrac{2x+3y+4z}{30+60+96}=\dfrac{3x+4y+2z}{45+80+48}\\ \Leftrightarrow A=\dfrac{2x+3y+4z}{3x+4y+2z}=\dfrac{186}{173}\)