Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Chứng minh rằng:
Nếu \(\dfrac{a^2+b^2}{c^2+d^2}\) = \(\dfrac{ab}{cd}\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b, c, d ≠ 0 , b + d ≠ 0). Chứng minh rằng: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\).Chứng minh rằng \(\dfrac{ab}{cd}\)= \(\dfrac{a^2-b^2}{c^2-d^2}\).Mình đang cần gấp ạ, mong mọi người giúp mình!
. Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) với \(a,b,c,d\ne0\). Chứng minh \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
Cho tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a.d}{c.d}=\dfrac{a^2-b^2}{b^2-d^2}\)và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng \(\dfrac{3a^2+10b^20-ab}{7a^2+b^2+5ab}=\dfrac{3c^2+10d^2-cd}{7c^2+d^2+5cd}\)
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)chứng minh rằng \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)