a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
=>ΔABH=ΔACH
b: Xét ΔACB có
BM,AH là trung tuyến
BM cắt AH tại G
=>G là trọng tâm
=>C,G,N thẳng hàng
c: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
=>ΔABG=ΔACG
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
=>ΔABH=ΔACH
b: Xét ΔACB có
BM,AH là trung tuyến
BM cắt AH tại G
=>G là trọng tâm
=>C,G,N thẳng hàng
c: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
=>ΔABG=ΔACG
Cho ∆ABC cân tại A, kẻ đường cao AH (H ∈ BC).
a. Chứng minh: ∆ABH=∆ACH.
b. Kẻ đường trung tuyến BM. Trên tia BM lấy điểm E sao cho BM=ME. Chứng minh: CE//AB.
c. Tia EC cắt AH tại K. Gọi G là giao điểm của BM và AH. Chứng minh: 3GH + HC > CK.
Cho tam giác ABC cân tại A. có AB = AC = 34 cm, BC = 32 cm. Từ A vẽ AH song song BC tại H.
a) Chứng minh tam ABH= tam giác ACH
b) Vẽ đường trung tuyến BM của tam giác ABC, BM cắt AH tại G. Chứng minh AH là đường trung tuyến và G là trọng tâm tam giác ABC
Cho ABC cân tại A, có BAC nhọn. Vẽ AH vuông góc BC tại H. a) Chứng minh: ABH ACH. b) Vẽ đường trung tuyến BK của tam giác ABC cắt AH tại O. Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt AB tại I. Chứng minh: ΔHAI cân và 3 điểm C, O, I thẳng hàng. c) Chứng minh: AH CH
Cho \(\Delta\)ABC cân tại A. Kẻ AH \(⊥\) BC tại H. a) Chứng minh: \(\Delta\)ABH = \(\Delta\)ACH.
b) Vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Chứng G là trọng tâm của \(\Delta\)ABC.
c) Cho AB = 30cm, BH = 18cm. Tính AH, AG.
d) Từ H kẻ HD song song với AC ( D thuộc AB ). Chứng minh ba điểm C, G, D thẳng hàng
Cho ABC cân tại A, kẻ đường cao AH (H BC).
a. Chứng minh:v Cho ABC cân tại A, kẻ đường cao AH (H BC).
b. Kẻ đường trung tuyến BM. Trên tia BM lấy điểm E sao cho BM = ME. Chứng minh: CE // AB.
c. Tia EC cắt AH tại K. Gọi G là giao điểm của BM và AH. Chứng minh: 3GH + HC > CK
mik cần gấp , giúp mik với
cho \(\Delta ABC\) cân tại A.Kẻ BH \(\perp\)BC tại H
a.chứng minh \(\Delta ABH=\Delta ACH\)
b.vẽ trung tuyến CN.Gọi G là giao điểm của AH và CN.Chứng minh G là trọng tâm của \(\Delta ABC\)
c.từ H kẻ HE song song với AB (E thuộc AC).Chứng minh ba điểm B, G,E thẳng hàng
cho tam giác nhọn ABC cân tại A có AB=13cm, BC=10cm. kẻ AH vuông góc với BC tại H
a) chứng minh tam giác ABH = tam giác ACH
b) gọi M là trung điểm của AC, G là giao điểm của BM và AH. tính AG
c) kẻ HE vuông góc với AB,HF vuông góc với AC (E thuộc AB, F thuộc AC. tia EH cắt AC tại I và tia FH cắt AB tại K. chứng minh AH là đường trung trực của đoạn thẳng IK.
d) từ H kẻ HD song song với AC (D thuộc AB). chứng minh ba điểm C, G, D thẳng hàng
Cho tam giác ABC cân tại A. Kẻ AH \(\perp\)BC tại H
a, Cm : Tam giác ABH = Tam giác ACH
b, Vẽ trung tuyến BM . Gọi G là giao điểm của AH và BM . Chứng minh G là trọng tâm của tam giác ABC
c,Cho AB=30cm , BH=18cm .Tính AH , AG
d, Từ H kẻ HD song song với AC ( D thuộc AB) . CHứng minh 3 điểm C,G,D thẳng hàng
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a, Chứng minh AH là trung tuyến của tam giác ABC.
b, Từ H kẻ đường thẳng song song với AC, cắt AB tại D. chứng minh D là trung điểm của AB.
c, Gọi E là trung điểm của AC, CD cắt AH tại G. chứng minh B, G, E thẳng hàng