Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
cho tam giác ABC vuông tại A, AB < AC, tia phân giác của góc ABC cắt AC ở D. Kẻ DE vuông góc với BC
a) c/m AB = BE
b) c/m BD là đường trung trực của AE
c) Tia ED cắt BA tại điểm K. C/m tam giác DKC cân và DA < DC
d) C/m BD vuông góc với CK
cho tam giác ABC vuông tại A, vẽ tia phân giác góc B cắt AC tại D, qua A vẽ đường thẳng vuông góc với BD cắt BD tại H và cắt BC tại E.
a-C/m tam giác ABE cân tại B
b-C/m DE Vuông góc với BC
c-C/m góc ABE bằng góc EDC
d-So sánh AD và DC
e-Qua A vẽ đường thẳng song song với BD cắ BC tại F. C/m tam giác ABF là tam giác cân =>B là trung điểm EF
*CẦN GẤP_K CẦN VẼ HÌNH
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA
a) CMR tam giác BID bằng tam giác CIA
b) CMR : BD vuông góc với AB
c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC
d) CMR: AB là tia phân giác cuả góc DAM
Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC
a) C/M: tam giác AKB bằng tam giác AKC
b) C/M: AK vuông góc với BC
c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
1. Cho tam giác ABC vuông ở A có AB<AC. AH vuông góc với BC tại H, D là điểm trên cạnh BC sao cho AD=AB. Vẽ DE vuông góc với BC tại E. Chứng mih rằng AH=HE.
2. Cho tam giác ABC vuông cân tại A.. Qua A vẽ đường thẳng d ở ngoài tam giác ABC . Vẽ BD vuông góc với d taị D. CE vuông góc với d tại E. M là trung điểm CB. Chứng minh rằng:
a) BD + CE = DE
b) Tam giác MDE là tam giác vuông cân
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC ở D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh DA = DE.
b) Chứng minh BD là trung trực của AE.
c) Kẻ CK vuông góc với BD tại K, các đường thẳng CK, BA cắt .nhau tại F. Chứng minh ba điểm E, D, F thẳng hàng.
d) Chứng minh BC - BA > DC - DA.
CHo tam giác ABC vuông tại A ( AB < AC ), BD là đường phân giác .Vẽ DE vuông góc với BC tại E.
a) Cho biết AB = 6cm, AC=8cm. Tính BC.
b) C/m tam giác DAE cân
c) CMR DA < DC
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy
Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE vuông góc với BC tại E.
a) Cho biết AB = 6cm, AC = 8cm. Tính BC.
b) Chứng minh tam giác DAE cân.
c) Chứng minh rằng DA < DC.
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
Trong tam giác ABC vuông tại A có góc B = 60 độ
a, trên cạnh BC lấy điểm D sao cho BA= BD qua D vẽ đường vuông góc với BC cắt tia đối của tia AB tại E . C/M tam giác ABC và tam giác DBE
c, gọi H là giao điểm của ED và AD. C/m BH là tia phân giác của góc ABC
d, qua B vẽ đường vuông góc với AB cắt ED tại K . C/m tam giác HBK đều
e, AB+ AC -BC/2 < AD< AD+AC+BC/2
hép mi