Cmr trong mọi tam giác ABC
a) a = b.\(\cos C\) + c.\(\cos B\)
b) a = r(\(\cot\frac{B}{2}\) + \(\cot\frac{C}{2}\))
c) ra = p.\(\tan\frac{A}{2}\)
d) r = (p - a).\(\tan\frac{A}{2}\)
CMR trong mọi tam giác ABC
a) r + ra + rb - r = 4R.cosC
b)tan\(\frac{B}{2}\). tan \(\frac{C}{2}\) = \(\frac{h_a-2r}{h_a}\) = \(\frac{h_a}{2r_a+h_a}\)
c) cos\(\frac{A}{2}\) = \(\sqrt{\frac{p\left(p-a\right)}{bc}}\) ; tan\(\frac{A}{2}\) = \(\sqrt{\frac{\left(p-b\right)\left(p-c\right)}{p\left(p-a\right)}}\)
Cho \(\Delta\)ABC. Cạnh a, b, c, \(\widehat{A}\)=60o.CMR: \(\frac{b}{b^2-a^2}=\frac{c}{a^2-c^2}\)
Cho tam giác ABC. Chứng minh rằng:
a) Nếu \(\frac{b^2-a^2}{2c}=b.cosA-a.cosB\) thì tan giác ABC cân tại C
b) Nếu \(\frac{sinB}{sinC}=2.cosA\) thì tam giác ABC cân tại B
c) Nếu a=2b.cosC thì tam giác ABC cân tại A
d) Nếu \(\frac{b}{cosB}+\frac{c}{cosC}=\frac{a}{sinB.sinC}\) thì tam giác ABC vuông tại A
e) Nếu S=2R2.sinB.sinC thì tam giác ABC vuông tại A
Cmr trong mọi tam giác ABC
a) \(\frac{\sin\left(A-B\right)}{\sin C}\)= \(\frac{a^2-b^2}{c^2}\)
b) cotA + cotB + cotC = \(\frac{a^2+b^2+c^2}{4S}\)
\(\Delta ABC\) thỏa mãn: \(\sin\frac{B}{2}\cdot\sin\frac{C}{2}=\frac{\sqrt{bc}}{4a}\). CMR: \(\Delta ABC\) là tam giác đều
Cho \(\Delta ABC\) nhọn có AA', BB', CC' là các đường cao. CMR: \(\frac{S_{A'B'C'}}{S_{ABC}}=2\cos A.\cos B.\cos C\)
\(\Delta ABC\) có: \(\left\{{}\begin{matrix}\sin A+\sin C=3\sin B\\\sin^2\frac{A}{2}+\sin^2\frac{C}{2}=\frac{2}{3}\end{matrix}\right.\). Tính số đo 3 góc
cho tg ABC. CMR:
a) \(\frac{3}{4}\left(a+b+c\right)< m_a+m_b+m_c< a+b+c\)
b) \(a^2+b^2+c^2\le9R^2\)
c) \(a^4+b^4+c^4\ge16S^2\)