cho \(\Delta\) ABC , M trung điểm BC . Tia đối MA lấy ME để ME = MA
a, CMR : AC = EB và AC//BE
b, Gọi I là 1 điểm thuộc AC , K là 1 điểm thuộc EB sao cho AI=EK . CMR : I , M , K thẳng hàng
c, từ E kẻ EH\(\perp\) BC ( H \(\in\) BC ) . biết \(\widehat{HBE}=50\) độ ; \(\widehat{MEB}=25\) độ
Tình \(\widehat{HEM}\) và \(\widehat{BEM}\)
tra loi:
, Xét hai tam giác AMC và tam giác BME, ta có:
AM=ME (giả thiết)
góc BME= góc AMC (2 góc đối đỉnh)
BM=MC (M là trung điểm của BC)
Suy ra: tam giác AMC= tam giác BME (c.g.c)
=> AC=BE (hai cạnh tương ứng) (ĐPCM)
=>góc MAC= góc MEB (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên: AC//BE (ĐPCM)
b, Xét tam giác AMI và tam giác EMK, ta có:
KE=AI (giả thiết)
góc CAM= góc EMK(chứng minh trên)
AM=Me ( giả thiết)
Suy ra: tam giác AMI= tam giác EMK(c.g.c)
=> góc AMI= góc EMK (2 góc tương ứng)
Mà góc AMI+ góc IME= 180 độ (2 góc kề bù)
Do đó: góc IME+ góc EMK= 180 độ
Hay 3 điểm I,M,K thẳng hàng (ĐPCM)
c, Vì góc HME là góc ngoài của tam giác BME nên:
HME= MBE+ MEB
= 50 độ+ 25 độ
= 75 độ
Xét tam giác vuông có H1= 90 độ, ta có
HME+HEM= 90 độ
=> Hem= 90 độ- HME= 90 độ- 75 độ= 15 độ
Theo định lí tổng 3 góc trong tam giác BME, ta có:
BME+ MBE+ BEM= 180 độ
=> BME= 180 độ- MBE-BEM= 180 đọ- 50 đọ- 25 độ= 105 độ .
Vậy HEM=15 độ
BME= 105 độ
Tick mình nhá
cho tam giác ABC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm E sao cho ME=MA . chứng minh rằng:
a)AC=EB và AC//BE
b) gọi I là một điểm trên AC , K là một điểm trên EB sao cho AI=EK . Chứng minh ba điểm I,M,K thẳng hàng.