Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>BD=60/7cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>BD=60/7cm
Cho tam giác ABC AD là tia phân giác của góc A biết AB = 8 cm AC = 12 cm BC = 10 cm Tính độ dài đoạn thẳng BD
Cho \(\Delta ABC\), AD là tia phân giác của\(\widehat{BAC}\)\(\left(D\in BC\right)\), AB = 5cm, BC = 6cm, CA=7cm. Khi đó độ dài đoạn thẳng BD là ... cm. ( Nhập kết quả dưới dạng số thập phân gọn nhất)
Cho ∆ABC ;AB=14cm ; AC=21 cm .AD là phân giác của góc A.Biết BD=8cm .Độ dài cạnh BC là :
A/ 15cm B/ 18cm C/ 20 cm D/12 cm
Bài tập: Cho \(\Delta ABC\) có AB =20 cm, AC = 25 cm, BC = 30 cm. Đường phân giác trong của \(\widehat{A}\) cắt cạnh BC tại D. Qua B kẻ BH vuông góc với AD (\(H\in AD\)), qua C kẻ CK vuông góc với AD (\(K\in AD\)).
a) Chứng minh \(\Delta ABH\) đồng dạng với \(\Delta ACK\)
b) Chứng minh AH.KD = AK.HD
c) Tính BD và DC
d) Đường phân giác của \(\widehat{B}\) cắt AC tại E và đường phân giác của \(\widehat{C}\) cắt AB tại F. Chứng minh \(\dfrac{DB}{DC}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}=1\)
Giúp nk với ạ, please
Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC . có:
A. BD = 20/7 cm; CD = 15/7cm.
B. BD = 15/7 cm; CD = 20/7 cm
C. BD = 1,5 cm; CD = 2,5 cm
D. BD = 2,5 cm; CD = 1,5 cm
Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:
A. DA = 8/3 ; DC = 10/3
B. DA = 10/3; DC = 8/3
C. DA = 4; DC = 2
D. DA = 2,5; DC = 2,5
Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:
A. 1/AB + 1/AC = 2/AD
B. 1/AD + 1/AC = 1/AB
C. 1/ AB + 1/AC = 1/AD
D. 1/AB + 1/AC = 1
Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :
A. x = 14
B. x = 12
C. x = 8
D. Một kết quả khác
Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :
A.10
B.10_5/7
C.14
D.14_2/7
Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:
A. 1/4
B. 1/2
C. 3/4
D.1/3
Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:
A. 3,5
B.5
C. 40/7
D.6
Bài 8:
Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:
A. ME//AC
B. góc AEF = 50°
C. Góc FMC = 50°
D. MB/MA= FA/FC
Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc:
A. DA = 3cm
B. DB = 5cm
C. AC = 6cm
D. Cả 3 đều đúng
😨😨 Lm ơn giúp mk lm đc ko thời hạn là trc 7h sáng ngày 7/4 cảm ơn các bn nhiều lm
Cho tam giác ABC có AB = 12 cm, AC = 20 cm ,BC = 28 cm . Đường phân giác góc A cắt BC tại D . Qua D kẻ DE // AB ( E thuộc AC )
a) Tính độ dài của đoạn thẳng BD , DC, DE.
b) Cho biết diện tích tam giác ABC là S , tính diện tích các tam giác ABD , ADE , DCE.
Câu 4:(3,5 điểm) Cho ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH, H∈BC).
a) Chứng minh: HBA ഗABC
b) Tính độ dài các đoạn thẳng BC, AH.
c) Trong ABC kẻ phân giác AD (D∈ BC). Trong ADB kẻ phân giác DE (E∈ AB); trong ADC kẻ phân giác DF (F∈ AC).
cho tam giác ABC có AB=5 cm, AC = 8 cm, góc A= 60 độ. AD là tia phân giác góc ABC (D thuộc BC).Tính độ dài BD.
cứu với.bạn nào làm đúng mình sẽ tick cho.
Cho tam giác ABC vuông tại A có AB bằng 9 cm AC bằng 12 cm tia phân giác góc A cắt BC tại D từ D kẻ DE vuông góc với AC E thuộc AC a
c.Tính độ dài đoạn thẳng bc B
d.Tính tỉ số bd trên BC và tính độ dài BD và CD
e.chứng minh tam giác ABC đồng dạng với tam giác ABC tính BC