\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=d\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\).
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a+b+c+d\(\ne\)0=>a=b=c=d
=>M=a+b/c+d + b+c/d+a + c+d/a+b + a+d/b+c=1+1+1+1=4
Nếu a+b+c+d=0=>a+b=-(c+d)
b+c=-(a+d)
=>M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c =-1+(-1)+(-1)+(-1)=-4