\(31+32+33+...+n=1950\)
\(\Leftrightarrow\dfrac{\left(n+31\right)\left(n-30\right)}{2}=1950\)
\(\Leftrightarrow n^2+n-2970=0\)
\(\Leftrightarrow n=54\)
\(31+32+33+...+n=1950\\ \Rightarrow\left(n+31\right)\left(n-31+1\right):2=1950\\ \Rightarrow\left(n+31\right)\left(n-30\right)=3900\)
Ta thấy \(\left(n+31\right)\) cách \(\left(n-30\right)\) 60 đơn vị nên phân tích \(3600=39\times100\)
\(\Rightarrow\left\{{}\begin{matrix}n+31=100\\n-30=39\end{matrix}\right.\Rightarrow n=69\)