a) Xét \(\Delta ABC\) có :
\(\widehat{AHC}+\widehat{HAC}+\widehat{ACH}=180^{^{^O}}\) (định lí PITAGO)
=> \(\widehat{HAC}=180^{^O}-\left(\widehat{AHC+}\widehat{ACH}\right)\)
=> \(\widehat{HAC}=180^{^O}-\left(90^{^O}+30^{^O}\right)\)
=> \(\widehat{HAC}=180^{^O}-120^{^O}\)
=> \(\widehat{HAC}=60^{^O}\)
b) Xét \(\Delta ABH\perp H\) (\(AH\perp BC\)) có :
\(AH^2=AB^2-BH^2\) (định lí PITAGO)
=> \(AH^2=5^2-3^2=16\)
=> \(AH=\sqrt{16}=4\left(cm\right)\)
Ta có : H ∈ BC
=> \(BH+HC=BC\)
Hay : \(3+HC=10\)
=> \(HC=10-3=7\left(cm\right)\)
Xét \(\Delta AHC\perp H\) có:
\(AC^2=AH^2+HC^2\) (Định lí PITAGO)
=> \(AC^2=4^2+7^2=65\)
=> \(AC=\sqrt{65}\)