Cho 4ABC cân tại A (AB = AC = 5cm). Kẻ AH ⊥ BC(I ∈ BC). a. Chứng minh: 4AIB = 4AIC và IB = IC. b. Tính độ dài cạnh AI. Biết BC = 6cm. c. Kẻ BM ⊥ AC và CN ⊥ AB(M ∈ AC và N ∈ AB). Chứng minh: 4ANC = 4AMB. d. Trên cạnh BC lấy điểm H (H không trùng B, I, C). Kẻ HE ⊥ AC(E ∈ AC) và HD ⊥ AB(D ∈ AB). Chứng minh: HD + HE = BM.
* Số 4 là kí hiệu tam giác nha mấy bn
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
Suy ra: IB=IC(hai cạnh tương ứng)
Ta có: ΔAIB=ΔAIC(cmt)
nên \(\widehat{AIB}=\widehat{AIC}\)(hai góc tương ứng)
\(\Leftrightarrow4\cdot\widehat{AIB}=4\cdot\widehat{AIC}\)(đpcm)
b) Ta có: IB=IC(cmt)
mà IB+IC=BC(I nằm giữa B và C)
nên \(IB=IC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABI vuông tại I, ta được:
\(AB^2=IB^2+AI^2\)
\(\Leftrightarrow AI^2=AB^2-BI^2=5^2-3^2=16\)
hay AI=4(cm)
Vậy: AI=4cm