20. Cho ΔABC vuông tại A, trung tuyến AM. Kẻ MD⊥AB tại D, ME⊥AC tại E.
a, Cm ADME là hình chữ nhật
b, Lấy điểm I sao cho D là trung điểm của IM. Tứ giác AMBI là hình gì?
c, Tìm điều kiện của ΔABC để tứ giác AMBI là hình vuông
d, Vẽ đường cao AH của ΔABC, kẻ HP⊥AB, HQ⊥AC. Cm PQ⊥AM
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC,AC, AB. Đường thẳng song song với BC vẽ qua A cắt MN tại Q.
a) Tứ giác BCNP là hình gì? Tìm điểu kiện của tam giác ABC để tứ giác BCNP là hình thang cân.
b) Tứ giác ABMQ là hình gì? Tìm điều kiênj của tam giác ABC đế tứ giác ABMQ là hình chữ nhật.
c) Tứ giác APMN là hình gì? Tam giác ABC có thêm điều kiện gì để tứ giác APMN là hinhf thoi.
d) Tứ giác AMCQ? Tam giác ABC có thêm điều kiện j để tứ giác AMCQ là hình chữ nhật, hình vuông.
Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Cho tam giác ABC cân tại A. Vẽ đường cao AH từ H kẻ các đường thẳng song song với AB,AC lần lượt cắt AC,AB tại M và N
a, Chứ minh tứ giác AMHN là hình thoi
b, Lấy E đối xứng với h qua N, tứ giác AEBH là hình gì? vì sao?
c, Tam giác ABC cần điều kiện gì để tứ giác AMHN lá hình vuông, khi đó tứ giác AEBH là hình gì? vì sao?
d, Chứng minh diện tích tam giác ABC= Diện tích tứ giác AEBH
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi E, N lần lượt là trung điển của AB và AC
a) Tứ giác ANME là hình gì? Vì sao?
b) Chứng minh tứ giác EHMN là hình thang cân?
c) Tính sói đo góc EHN?
d) Từ A kẻ đường thẳng song song với BV cắt tia ME tại K. Tam giác ABC cần thêm điều kiện gì để tứ giác AKBM là hình vuông? Khi đó tứ giác EHMN là hình gì? Vì sao?
1) Cho tam giác ABC, đường trung tuyến AD. Gọi M là trung điểm của AC,E là điểm đối xứng với D qua điểm M
a) Tứ giác ADCE là hình gì
b) C/m tứ giác AEDB là hình bình hành
c) Gọi K là trung điểm AD. Tính KM biết BC = 4cm
d) Tam giác ABC có điều kiện gì thì tứ giác ADCE là hình chữ nhật
e) Tam giác ABC có điều kiện gì thì tứ giác AEDB là hình chữ nhật
2) Cho tam giác ABC vuông tại A, đường cao AH. Gọi d,E lần lượt là hình chiếu của H trên AB và AC. M là trung điểm của BC
a) Tứ giác ADHE là hình gì ? Tại sao ?
b) Chứng minh góc BAH = góc CAM
c) Gọi I,J lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DIJE là hình thang vuông
d) Tam giác vuông ABC cần có thêm điều kiện gì để tứ giác DIJE là hình chữ nhật
Cho tam giác ABC cân tại A vẽ đường cao AH từ H kẻ các đường thẳng song song với AB và AC lần lượt cắt AC; AB tại M và N
a) Tứ giác AMHN là hình thoi
b) Lấy E là điểm đối xứng với H qua điểm N. Tứ giác AEBH là hình gì? Vì sao?
c) Tam giác ABC cần điểu kiện gì để tứ giác AMHN là hình vuông?
d) Ch/m SABC = SAEBH
Bài 1:Cho tam giác ABC, điểm I nằm giữa B và C
Qua I vẽ đường thẳng song song vs AB, cắt AC ở H
Qua I vẽ đường thẳng song song vs AC, cắt AB ở K
a) Tứ giác AHIK là hình gì?
b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?
c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?
Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng vs D qua AC, F là giao điểm của DN và AC
a) Tứ giác AEDF là hình gì? Vì sao?
b) Các tứ giác ADBM, ADCN là hình gì? Vì sao?
c) CMR: M đối xứng vs N qua A
d) Tam giác vuông ABC có điều kiện gì thì tứ giác ADEF ,là hình vuông
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. gọi D là điểm đối xứng vs H qua AB, gọi E là điểm đx vs H qua Ac
a) CM D đx vs E qua A
b) Tam giác DHE là tam giác gì? Vì sao?
c) Tứ giác BNEC là hình gì? Vì sao
d) CMR BC= BD+CE
Bài 3: Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm đk của tứ giác ABCD để EFGH là:
a) Hình chứ nhật ; b) Hình thoi ; c) hình vuông
Bài 4: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm GB, K là trung điểm của GC.
a) CMR: Tứ giác DEHK là hbh
b) Tam giác ABC có đk j thì tứ giác DEHK là hcn
c) Nếu các đường trung tuyến BN và CE vuông góc vs nhau thì tứ giác DEHK là hình j?
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.
Mong mn giúp mk vs ah