Cho ΔABC có AB=2; BC=3;AC=6 a) Tính diện tích ΔABC=? b) Tính độ dài đường trung tuyến kẻ từ C c) Tính bán kính đường tròn ngoại tiếp ΔABC d) Tính số đo góc lớn nhất trong ΔABC.
Cho ΔABC vuông tại A, biết (AB) ⃗.(CB) ⃗=4, (AC) ⃗.(BC) ⃗=9. Khi đó AB, AC, BC có độ dài là
A. 2; 3; √13. B. 3; 4; 5. C. 2; 4; 2√5. D. 4; 6; 2√13.
Cho tam giác ABC vuông cân tại A(4;1) và cạnh huyền BC có phương trình: 3x-y+5=0. Viết phương trình hai cạnh góc vuông AB và AC
ai đó làm ơn giúp mik với mik đg cần cách làm chi tiết bài toán này gấp :
Cho ΔABC cân tại A góc A = 120\(^o\); AB=AC= 3 cm gọi M,N,P lần lượt là trung điểm của BC, AC, BN.
a) tính độ dài BC,BN
b) tính độ dài MN,MP
c) D∈AB sao cho AD=1.tính độ dài CD
d) G là trọng tâm của ΔABC tính độ dài GA,GB,GC.
Cho ΔABC có BC=3; góc A=40°; góc C=60° a) Tính bán kính đường tròn ngoại tiếp ΔABC b) Tính cạnh AC=? c) Tính độ dài trung tuyến kẻ từ A
cho tam giác ABC vuông tại A (AC>AB) Đường cao AH (H thuộc BC) trên tia HC lấy điểm D sao cho HD=HA . Đường vuông góc với BC tại D cắt AC tại E .
a) CMR hai tam giác BEC và ADC đồng dạng .Tính độ dài BE theo m=AB
b) ọi M là tung điểm của đoạn BE . CMR ha tam giác BHM và BEC đồng dạng . Tính số đo góc AHM
c) Tia AM cắt BC tại G cm \(\dfrac{\text{GB}}{\text{BC}}=\dfrac{\text{HD}}{\text{AH+HC}}\)
Cho tam giác nhọn ABC nội tiếp đường tròn (O). M, N là hai điểm thuộc cung nhỏ A C ⏜
sao cho MN song song với AC và tia BM nằm giữa hai tia BA, BN. BM giao AC tại P.
Gọi Q là một điểm thuộc cung nhỏ B C ⏜ sao cho PQ vuông góc với BC. QN giao AC tại R
2). Chứng minh rằng BR vuông góc với AQ
Trong mặt phẳng Oxy, cho tam giác ABC vuông cân tại B. Điểm D nằm trên
cạnh BC, điểm E là hình chiếu vuông góc của D lên AC và điểm K(6;2) là trung điểm
của AD. Tìm tọa độ các đỉnh của tam giác ABC, biết phương trình đường
thẳng BE là x-2y-7=0 diện tích tam giác ABC bằng 18.
Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Gọi M là một điểm trên cạnh BC và D là chân đường phân giác trong góc A. Tính độ dài vecto MD khi độ dài vecto AM nhỏ nhất
Cho tam giác nhọn ABC, đường cao AH, H thuộc BC. P thuộc AB sao cho CP là phân giác góc BCA.
Giao điểm của CB và AH là Q. Trung trực của PQ cắt AH và BC lần lượt tại E, F.
1). PE giao AC tại K. Chứng minh rằng PK vuông góc AC.