a: Xét ΔHAM vuông tại M và ΔHCM vuông tại M có
HM chung
MA=MC
Do đo: ΔHAM=ΔHCM
b: Xét ΔABC có
M là trung điểm của AC
MH//AB
Do đó: H là trung điểm của BC
Ta có: ΔABC vuông tại A
mà AH là đường trung tuyến
nên AH=BH
=>ΔHAB cân tại H
a: Xét ΔHAM vuông tại M và ΔHCM vuông tại M có
HM chung
MA=MC
Do đo: ΔHAM=ΔHCM
b: Xét ΔABC có
M là trung điểm của AC
MH//AB
Do đó: H là trung điểm của BC
Ta có: ΔABC vuông tại A
mà AH là đường trung tuyến
nên AH=BH
=>ΔHAB cân tại H
Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn
Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB.
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.
(Vẽ hình giúp mk với nha mk cần gấp ạ)
Cho tam giác ABC vuông tại A.
b1a. Cho biết AB = 9cm; BC =15cm. Tính AC rồi so sánh các góc của tam giác ABC.
b. Trên BC lấy điểm D sao cho BD = BA. Từ D vẽ đường thẳng vuông góc với BC cắt AC tại E. Chứng minh: ΔEBA = ΔEBD.
c. Lấy F sao cho D là trung điểm của EF. Từ D vẽ DM ⊥ CE tại M, DN ⊥ CF tại N. Cho góc ECF = 60º và CD = 10cm . Tính MN.
b2 Cho tam giác ABC cân tại A ( góc A < 90º) . Vẽ AH vuông góc với BC tại H.
a. Chứng minh: ΔAHC = ΔAHB.
b. Kẻ HM vuông góc với AC tại M. Trên tia đối của tia HM lấy điểm N sao cho HN = HM.
c. Chứng minh: BN // AC.
d. Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ
Cho ∆ABC có AB = AC và AC > BC. Gọi H là trung điểm cạnh BC.
a) Chứng minh: ∆ABH = ∆ACH và AH là tia phân giác góc BAC.
b) Trên tia đối của tia HA lấy điểm M sao cho HA = HM. Chứng minh AB // MC.
c) Từ B vẽ đường thẳng vuông góc với AC tại K, trên tia đối của tia KC lấy điểm D sao cho KD =
KC. Chứng minh tia BK là tia phân giác của góc DBC+hình vẽ
Cảm ơn ạ!!!!
Cho ∆ABC có AB = AC và AC > BC. Gọi H là trung điểm cạnh BC.
a) Chứng minh: ∆ABH = ∆ACH và AH là tia phân giác góc BAC.
b) Trên tia đối của tia HA lấy điểm M sao cho HA = HM. Chứng minh AB // MC.
c) Từ B vẽ đường thẳng vuông góc với AC tại K, trên tia đối của tia KC lấy điểm D sao cho KD =
KC. Chứng minh tia BK là tia phân giác của góc DBC
Cho tam giác ABC có AB = AC và AC > BC. Gọi H là trung điểm cạnh BC.
a) Chứng minh ∆ABH = ∆ACH.
b) Trên tia đối của tia HA lấy điểm M sao cho HA = HM. Chứng minh AB//MC.
c) Từ B vẽ đường thẳng vuông góc với AC tại K, trên tia đối của tia KC lấy điểm D sao cho KD = KC.
Chứng minh tia BK là tia phân giác của góc DBC.
d) Trên tia đối của tia BA lấy điểm E sao cho BE = AD. Chứng minh CE = CA.
1, Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Vẽ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh rằng: AE vuông góc với ED.
2, Cho tam giác ABC. Gọi M là trung điểm của BC. Vẽ BD vuông góc với AM tại D, CE vuông góc với AM tại E. Chứng minh rằng : AB + AC > 2AM.
Cho tam giác ABC vuông tại A, có góc B = 60 độ. Vẽ AH vuông góc với BC tại H. Trên AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của HD. Tia AI cắt HC tại K. Trên tia đối của HA lấy E sao cho HE = HA. Chứng minh H là trung điểm của BK
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho Ha=Hd
a) chứng minh tam giac abh= tam giác DBH và tam giác AbD là tam giác cân
b) Gọi M,N lần lượt là trung điểm của Ac,Dc, G là giao điểm của dm và hc. Chứng minh 3 điểm A, g,n thẳng hàng
Cho tam giác ABC cân tại A(góc A < 90º) . Vẽ AH vuông góc với BC tại H.
a. Chứng minh: ΔAHC = ΔAHB.
b. Kẻ HM vuông góc với AC tại M. Trên tia đối của tia HM lấy điểm N sao cho HN = HM. Chứng minh: BN // AC.
c. Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ.
Cho tam giác ABC có AB = AC và AC > BC> Gọi H là trung điểm cạnh BC
a) Chứng minh : tam giác AHB = tam giác AHC
b) Trên tia đối của tia HA lấy điểm M sao cho HM = HA. CMR AB//MC
c) Từ B vẽ đường thẳng vuông góc với AC tại K, trên tia đối của tia KC lấy điểm D sao cho KD = KC. Chứng minh : Bk là tia phân giác của góc DBC
d) Trên tia đối của tia BA lấy điểm E sao cho BE = AD. Chứng minh CE = CA