1 Xét ΔAED có AE=AD và góc EAD=90 độ
=>ΔAED vuôg cân tại A
2: góc EDA+góc CBA=45+45=90 độ
=>DE vuông góc BC
3: Xét ΔCBD có
CA,DE là đường cao
CA cắt DE tại E
=>E là trực tâm
=>BE vuông góc DC
1 Xét ΔAED có AE=AD và góc EAD=90 độ
=>ΔAED vuôg cân tại A
2: góc EDA+góc CBA=45+45=90 độ
=>DE vuông góc BC
3: Xét ΔCBD có
CA,DE là đường cao
CA cắt DE tại E
=>E là trực tâm
=>BE vuông góc DC
Cho tam giác ABC vuông cân tại A. Lấy E thuộc cạnh AC. Trên tia đối tia AB lấy điểm D sao cho AD = AE. Chứng minh: a) DE vuông góc với BC. b) BE vuông góc DC.
Cho tam giác ABC vuông cân tại A. Lấy điểm E thuộc cạnh AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AE. Chứng minh rằng:
a) DE vuông góc với BC
b) BE vuông góc với DC
vẽ hình và k chép bài trên mạng
Gọi D là điểm thuộc cạnh AB của tam giác ABC vuông cân tại A. Trên tia đối của tia AC, lấy điểm E sao cho AE=AD. Chứng minh CD vuông góc với BE
1) Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AE
a) Chứng minh rằng : tam giác ABC = tam giác ADE
b) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM = tam giác ABN và tam giác AMN vuông cân
c) Qua E kẻ EH vuông góc với BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE vuông góc với BD
Cho ΔABC cân tại A. Trên cạnh AB lấy điểm D. Trên tia đối của tai AC lấy điểm E sao cho BD=CE, nối D với E sao cho BD=CE, nối D với E, kẻ DH vuông góc với BC (H thuộc BC), EK vuông góc với BC (K thuộc BC). chứng minh:
a) BH=CK
b) BC<DE
Cho tam giác ABC vuông tại A (AB>AC). Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên cạnh AB lấy điểm E sao cho AC=AE.
a) Chứng minh rằng: tam giác ABC = tam giác ADE.
b) Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM=tam giác ABN và AMN vuông cân.
c) Qua E kẻ AH vuông góc với BC tại H. Chứng minh rằng 3 điểm D,E,H thẳng hàng và CE vuông góc với BD
Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC
Cho ΔABC vuông tại B, tia phân giác của góc BAC cắt cạnh BC tại D. Trên cạnh AC lấy điểm E sao cho AB = AE
a) Biết rằng AB = 12cm, AC = 13cm, tính độ dài cạnh BC
b) Chứng minh ΔABD = ΔAED từ đó suy ra AD là đường trung trực của BE
c) Tia Cx // BE cắt tia AB tại F. Chứng minh ΔAFC là tam giác cân
d) Chứng minh rằng E, D, F thẳng hàng
câu 1: cho tam giác ABC có A=110 độ, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK=MA.
a, tính số đo của góc ACK
b, vẽ về phía ngoài của tam giac ABC các đoạn thẳng AD,AE sao cho AD vuông góc với AB và AD=AB,AE vuông góc với AC và AE=AC. chứng minh rằng tam giác CAK=tam giác AED
c,, Chứng minh rằng MA vuông góc với DE
câu 2: cho tam giác ABC vuông tại A có AB=AC. lấy điểm D thuộc cạnh AB,điểm E thuộc cạnh AC sao cho AD=AE. đường thẳng đi qua D và vuông góc với BE cắt đường thẳng CA ở K. chứng minh rằng AK=AC