Xét ΔAHC vuông tại H và ΔBDC vuông tại D có
góc C chung
Do đó: ΔAHC\(\sim\)ΔBDC
Xét ΔAHC vuông tại H và ΔBDC vuông tại D có
góc C chung
Do đó: ΔAHC\(\sim\)ΔBDC
Cho ΔABC nhọn. Các đường cao AH và BD cắt nhau tại E.
a, tam giác AEH đồng dạng với tam giác BED
Cho ΔABC có 3 góc nhọn, đường cao AH (H ∈ BC). Vẽ HD vuông góc với AB tại D, HE vuông góc với AC tại E.
a) Chứng minh: ΔAHB ∼ ΔADH, ΔAHC ∼ ΔAEH.
b) Chứng minh: AD.AB = AC.AE.
c) Cho AB = 12cm, AC = 15cm, BC = 18cm. Tính độ dài đường phân giác AK của ΔABC (K ∈ BC).
Bài 2 ( 3 điểm): Cho ΔABC nhọn, các đường cao BD CE , cắt nhau tại H .Đường
vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K .
a) Chứng minh AH BC .
b) Chứng minh tứ giác BHCK là hình bình hành.
Bài 2 ( 3 điểm): Cho ΔABC nhọn, các đường cao BD CE , cắt nhau tại H .Đường
vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K .
a) Chứng minh AH vuông góc BC
b) Chứng minh tứ giác BHCK là hình bình hành.
Cho ΔABC cân tại A, đường cao AH. Biết AB = AC = 17cm, AH = 15cm.
a) Tính BH và BC.
b) Từ B kẻ BD ⊥ AC (D ∈ AC). Chứng minh: ΔAHC ∼ ΔBDC.
c) Qua D vẽ DE ⊥ bc (E ∈ BC). Chứng minh: BE.EC = \(\dfrac{AH^2.CE^2}{CH^2}\).
C1. Cho tam giác nhọn DEF. Đường cao EA và FB cắt nhau tại H.
a) Chứng minh rằng
b) Chứng minh rằng
C2. Cho tam giác nhọn ABC. Đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng
b) Chứng minh rằng
C3. Cho ABC vuông tại A, đư¬ờng cao AH cắt đ¬ường phân giác CD tại I.
a) Chứng minh rằng:
b) Chứng minh AC2 = CH.BC
C4. Cho hình bình hành ABCD, trên cạnh AB lấy một điểm M. Đường thẳng DM cắt cạnh CB kéo dài tại N.
a) Chứng minh : MAD MBN
b) Chứng minh : MA.MN = MD.MB
Cho tam giác ABC nhọn. Kẻ các đường cao BE và CF cắt nhau tại H.
1) Chứng minh A E . A C = A F . A B v à Δ A E F ∽ Δ A B C .
2) Qua B kẻ đường thẳng song song với CF cắt tia AH tại M. AH cắt BC tại D. Chứng minh B D 2 = A D . D M .
3) Cho A C B ^ = 45 0 và kẻ AK vuông góc với EF tại K. Tính tỉ số S A F H S A K E .
4) Chứng minh: A B . A C = B E . C F + A E . AF
Cho ABC nhọn, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. a, Chứng minh AH BC. b, Chứng minh tứ giác BHCK là hình bình hành. c, Gọi I là trung điểm của AK, M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng
cho tam giác ABC nhọn , các đường cao BD và CE cắt nhau tại H . Đường vuông góc AB tại B và đường vuông góc với AC tại C cắt nhau tại K . Gọi M là trung điểm của BC . Chứng minh
a , Chứng minh ADB∼ΔAEC và ΔAED ~ΔACB
d, AH cắt BC tại O . Chứng minh : BE . BA + CD . CA = BC2
g, cho góc ACB = 45o , gọi P là trung điểm của DC . Từ D kẻ đường thẳng vuông góc với BP tại I và cắt CK tại N . Tìm tỉ số diện tích của tứ giác CPIN và diện tích tam giác DCN
h, tam giác ABC có điềm kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?