Cho tam giác ABC nội tiếp đường tròn (O') và ngoại tiếp đường tròn (O). Tia AO cắt đường tròn (O') tại D. Ta có:
(A) CD = BD = O'D ; (B) AO = CO = OD
(C) CD = CO = BD ; (D) CD = OD = BD
Hãy chọn câu trả lời đúng.
Cho tam giác ABC nội tiếp đường tròn (O') và ngoại tiếp đường tròn (O). Tia AO cắt đường tròn (O') tại D. Ta có:
(A) CD = BD = O'D ; (B) AO = CO = OD
(C) CD = CO = BD ; (D) CD = OD = BD
Hãy chọn câu trả lời đúng.
Cho đường tròn (O; R) và một điểm A trên (O). Trên đoạn OA lấy điểm B sao cho OB = 1 3 OA
a, Chứng minh đường tròn đường kính AB tiếp xúc với (O)
b, Đường tròn (O; R') với R R' cắt đường tròn đường kính AB tại C. Tia AC cắt hai đường tròn đổng tâm tại D và E với D nằm giữa C và E. Chứng minh AC = CD = DE
Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Vẽ tiếp tuyến AM và cát tuyến ACD. Gọi I là trung điểm của CD. Đường tròn đường kính OA cắt (O) tại N.
a) Chứng minh tứ giác AMOI nội tiếp được một đường tròn. Xác định tâm K của đường tròn ngoại tiếp đó
b) Vẽ dây CB vuông góc với MO cắt MN tại F. Chứng minh rằng tứ giác CFIN là tứ giác nội tiếp
cho đường tròn (o), đường kính AB gọi H là trung điểm của OA, qua H kẻ đường thẳng vuông góc với AB cắt đường tròn (o) tại hai điểm(o) C và D. qua D kẻ tiếp tiếp tuyến với đường tròn (o) cắt tia OA tại M. chứng minh MC là tiếp tuyến của đường tròn (o)
Cho đường tròn (O;R) đường kính AB. Gọi C là điểm thuộc đường tròn (O) sao cho AC > BC
a) Chứng minh ΔABC vuông
b) Tiếp tuyến tại A và C của (O) cắt nhau tại D.
c) Gọi H là giao điểm của OD và AC. Chứng minh 4HO.HD = AC^2
d) Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC tại M. Chứng minh MB là tiếp tuyến của đường tròn (O).
Cho đường tròn (O) bán kính R và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyết AB và AC của đường tròn (O) (B, C là tiếp điểm), OA cắt BC tại H a) Chứng minh tứ giác ABOC nội tiếp và xác định M là đường tròn ngoại tiếp tứ giác này. b) Chứng minh OA vuông góc BC c) Vẽ cát tuyến AEF (AEF nằm giữa 2 tia AB, AO). Gọi K là trung điểm của EF. Chứng minh 5 điểm A, B, K, O, V cùng thuộc 1 đường tròn.
từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC đến đường tròn (O) (B,C là các tiếp điểm). Đường tròn I đường kính AB cắt BC tại H và cắt đường tròn O tại D (D khác B).
b) gọi K là giao điểm của OI với BD. Chứng minh tứ giác AIKH nội tiếp.
c) Đường tròn (I) cắt AC tại E. Gọi F là giao điểm của OA với BE. Chứng minh đường tròn ngoại tiếp tam giác ABF đi qua điểm K.
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn sao cho OA =2R . Vẽ các tiếp tuyến AB, AC với đường tròn (B,C là những tiếp điểm )
Chứng minh ABOC là tứ giác nội tiếp .
Kẻ BD là đường kính của (O;R) . Chứng minh CD // AO
Nối A với D cắt đường tròn tâm O tại E. Chứng minh AD.AE = 3R2