Cho ΔABC có AB = AC, gọi H là trung điểm của BC.
a) Chứng minh: ΔABH = ΔACH
b) Qua điểm C vẽ đường thẳng vuông góc với AC, đường thẳng này cắt tia AH tại K.
Chứng minh: ΔABK = ΔACK và AB BK.
c) Gọi D , F lần lượt là trung điểm AH và AC. Trên tia đối của tia DB lấy điểm E sao
cho DE = DB. Chứng minh: 3 điểm H, E, F thẳng hàng.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC