Lời giải:
Kẻ $BH\perp AC$ với $H\in AC$
$\frac{AH}{AB}=\cos A\Rightarrow AH=AB.\cos A$
$=4.\cos 60^0=2$ (cm)
$\frac{BH}{AB}=\sin A\Rightarrow BH=AB\sin A=4\sin 60^0=2\sqrt{3}$ (cm)
$CH=AC-AH=5-2=3$ (cm)
Áp dụng định lý Pitago:
$BC=\sqrt{BH^2+CH^2}=\sqrt{(2\sqrt{3})^2+3^2}=\sqrt{21}$ (cm)