Cho tam giác cân ABC (AB=AC) P là điểm trên cạnh đáy BC . Kẻ các đường thẳng PE,PD lần lượt song song với AB,AC( E thuộc AC,D thuộc AB) gọi Q là điểm đối xứng với P qua DE . Chứng minh bốn điểm Q,A,B,C cùng thuộc một đường tròn.
Cho điểm M thuộc đáy BC của tam giác cân ABC. Kẻ các đường thẳng song song với các cạnh bên cắt AB, AC lần lượt tại D, E . I là điểm đối xứng với m qua DE. Chứng minh :
a) I thuộc đường tròn ngoại tiếp tam giác ABC
b)Khi M di chuyển trên BC thì IM luôn đi qua 1 điểm cố định
Cho tam giác ABC, AB<AC. Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ A, B, C xuống BC, AC, AB. Gọi P là giao điểm của BC và EF. Đường thẳng qua D song song với EF lần lượt cắt các đường thẳng AB, AC, CF tại Q, R, S.
a) CMR BQCR nội tiếp đường tròn
b) CMR PB/PC = BD/CD và D là trung điểm của BC
c) Đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC
cho tam giác ABC, AB<AC và nội tiếp đường tròn (O). D là điểm đối xứng với A qua O. Tiếp tuyến với (O) tại D cắt BC tại E. Đường thẳng DE lần lượt cắt các đương thẳng AB, AC tại K,L. ĐƯơng thẳng qua A song song với EO cắt DE tại F. Đường thẳng qua song song với EO cắt DE tại F. ĐƯơng thẳng qua D song song với Eo lần lượt cắt AB,AC tại M,N. CMR
a. Tứ giác BCLK nội tiếp
b. Đương thẳng EF là tiếp tuyến của đương tròn ngoại tiếp tam giác BCF
c. D là trung điểm MN
cần giải gấp câu c
Cho đường tròn (O) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Lấy điểm D thuộc (O) sao cho BD song song với AO. AD cắt (O) tại đểm thứ hai E. Gọi M là trung điểm của AC.
a) Chứng minh rằng Me là tiếp tuyến với (O).
b) Gọi T là giao điểm của ME với BC, I là giao điểm của DE với BC. Chứng minh rằng OI vuông góc với AT.
c) Qua E kẻ đường thẳng song song với AB cắt BC, BD lần lượt tại P, Q. Chứng minh rằng PQ=PE.
Cho ( O; R ) điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn ( B, C là các tiếp điểm ).
a. CMR: \(OA\perp BC\)
b. Qua C kẻ đường thẳng song song với OA, cắt O tại D. CMR: B, O, D thẳng hàng.
c. Gọi P, Q lần lượt là trung điểm của AB và AC. M là một điểm bất kì trên đường thẳng PQ. Kẻ tiếp tuyến MK với O. CMR: MK = MA.
cho tam giác ABC vuông tại A, AB<AC đường cao AH gọi D là điểm đối xứng của B qua H vẽ DE song song với AB,E thuộc AC CMR: a) tam giác HAE cân tại H b) HE là tiếp tuyến của đường tròn ngoại tiếp CDE
cho tam giác ABC vuông tại A, AB<AC đường cao AH gọi D là điểm đối xứng của B qua H vẽ DE song song với AB,E thuộc AC CMR: a) tam giác HAE cân tại H b) HE là tiếp tuyến của đường tròn ngoại tiếp CDE
cho tam giác ABC vuông tại A, AB<AC đường cao AH gọi D là điểm đối xứng của B qua H vẽ DE song song với AB,E thuộc AC CMR: a) tam giác HAE cân tại H b) HE là tiếp tuyến của đường tròn ngoại tiếp CDE