Cho tam giác ABC, biết AB = 3AC. Tính tỉ số hai đường cao xuất phát từ đỉnh B và C.
Cho tam giác ABC, biết AB = 3AC. Tính tỉ số hai đường cao xuất phát từ đỉnh B và C. Bài 2 Cho hình thang vuông ABCD (∠A = ∠D = 90°). Gọi H là điểm đối xứng với B qua AD, I là giao điểm của CH và AD. Chứng minh rằng ∠(AIB) = ∠(DIC)
Cho tam giác ABC, AB=3AC. Tính tỉ số đường cao xuất phát từ B và C
cho tam giác ABC biết AB=AC. Kẻ đường cao BH và CK.
a) Viết công thức tính diện tích tam giác ABC theo độ dài đường cao BH VÀ CK.
b)tỉ số 2 đường chép xuất phát từ các đỉnh B cà C.
c)so sánh độ dài 2 đường cao BH VÀ CK.
Cho tam giác ABC có AB=12 cm, AC=16cm. Hai đường cao xuất phát từ đỉnh B và C là BH và CK . Biết BH=9cm. Tính CK.
A. 12cm
B. 15cm
C. 9cm
D. 8cm
cho tam giác ABC;AB =3AC .tinh tỷ số đường cao xuất phát B và C
Chọn đúng (Đ), sai (S) điền vào chỗ chấm.
a) Nếu hai tam giác cân có các góc ở đỉnh bằng nhau thì đồng dạng với nhau. ...
b) Nếu Δ A B C ~ Δ D E F với tỉ số đồng dạng là 1/2 và Δ D E F ~ Δ M N P với tỉ số đồng dạng là 4/3 thì Δ M N P ~ Δ A B C với tỉ số đồng dạng là 2/3 ....
c) Trên cạnh AB, AC của ΔABC lấy 2 điểm I và K sao cho A I / A B = A K / B C t h ì I K / / B C . . . .
d) Hai tam giác đồng dạng thì bằng nhau....
Cho tam giác ABC. Tính tỉ số đường cao BB’, CC’ xuất phát từ đỉnh B, C
Cho tam giác ABC có đường cao kẻ từ A, đường trung tuyến xuất phát từ B và đường phân giác kẻ từ đỉnh C đồng qui. Gọi a, b, c lần lượt là độ dài 3 cạnh BC, AC, AB. Chứng minh (a + b)(a2 + b2 - c2) = 2a2b