Cho ΔABC (AB<AC) nội tiếp (O).Hai đường cao BD và CE cắt nhau tại H.Đường thẳng AH cắt (O) tại K , gọi L là hình chiếu của D lên AB.Gọi J là giao điểm của KD và (O) , I là giao điểm của BJ và ED . Chứng minh BL.BA=BI.BJ
Cho ΔABC nhọn nội tiếp (O) (AB<AC) có hai đường cao BE và CF cắt nhau tại trực tâm H.Vẽ đường kính AD của (O) ;K là giao điểm của đường thẳng AH với (O) ; L,P lần lượt là giao điểm của hai đường thẳng BC và EF ; AC và KD. Gọi M là trung điểm của đoạn thẳng BC.Chứng minh AH=2OM
cho tam giác ABC nội tiếp đường tròn (O). hai đường cao BD và CE cắt nhau tại H AH cắt BC và (O) lần lượt tại F và K
b) gọi J là giao điểm của BK và (O) chứng minh góc BJK bằng góc BDE
c) gọi L là chân đường vuoogn góc hạ từ đỉnh D xuống AB, I là giao điểm của ED và BJ chứng minh ALIJ là tứ giác nội tiếp và I là trung điểm ED
cho tam giác abc nhọn (ab ac) nội tiếp đường tròn hai đường cao BD và CE cắt nhau tại h đường ah cắc bc và đường trong tâm o lần lượt tại F và K
a) chứng minh tg BEDC nội tiếp
b) gọi I là hình chiếu của d lên AB c/m BD^2 = BI.BA
c) Gọi J là giao điểm của KD và đường tròn tâm o c/m góc BJK = góc BDE
Cho ΔABC nhọn (AB<AC) . Đường tròn tâm O đường kính BC cắt các cạnh AC,AB lần lượt tại D và E . Gọi H là giao điểm của BD và CE ; F là giao điểm của AH và BC . Gọi M là trung điểm của AH . Chứng minh DM là tiếp tuyến của (O)
Cho đường tròn (O;R) đường kính AB. Gọi C là điểm thuộc đường tròn (O) sao cho AC > BC
a) Chứng minh ΔABC vuông
b) Tiếp tuyến tại A và C của (O) cắt nhau tại D.
c) Gọi H là giao điểm của OD và AC. Chứng minh 4HO.HD = AC^2
d) Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC tại M. Chứng minh MB là tiếp tuyến của đường tròn (O).
Cho tam giác ABC vuông tại A. Đường tròn tâm O đường kính AB cắt các đoạn BC và OC lần lượt tại D và I. Gọi H là hình chiếu của A lên OC, AH cắt BC tại M.
a) Chứng minh: Tứ giác ACDH nội tiếp và CHDˆ=ACBˆ.
b) Chứng minh: Hai tam giác OBH và OBC đồng dạng với nhau và HM là tia phân giác của góc BHD.
c) Gọi K là trung điểm của BD. Chứng minh: MD.BC=MB.CD và MB.MD=MK.MC.
d) Gọi E là giao điểm của AM và OK; J là giao điểm của IM và (O) (J khác I). Chứng minh: Hai đường thẳng OC và EJ cắt nhau tại một điểm nằm trên (O).
(mn giup mk vs a T^T)
Cho ΔABC có ba góc nhọn (AB<AC) nội tiếp (O),đường cao AH.Trên đoạn thẳng AH lấy điểm D bất kì (D khác A và H).Gọi M và N lần lượt là hình chiếu vuông góc của D trên AB và AC
a)Chứng minh MN song song với tiếp tuyến tại A của (O)
b)Đường thẳng AH cắt MN tại I.Chứng minh khi D di động trên AH thì tâm đường tròn ngoại tiếp ΔBMI luôn thuộc một đường cố định
cho tam giác ABC có AB=8 cm, AC=6cm, BC=10cm. Vẽ đường tròn tâm O đường kính AB cắt BC tại D. gỌI H là hình chiếu của A LÊN OC.Đường thẳng AH cắt BC tại M
a) tính độ dài AD và BD
b) gọi I là giao điểm của AM và (O)( I khác A), K là trung điểm BD
CM: tg TKOA nội tiếp
c) CM MB.MD=MK.MC