Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
Cho đa thức f(x) = ax2 + bx + 2019 có hệ số a, b là các số hữu tỉ và \(f\left(1+\sqrt{2}\right)=2020.\)
Tìm a, b và tính \(f\left(1-\sqrt{2}\right)\)
Cho f(x)=ax^2+bx+2015, a,b hữu tỉ và f(1 + \(\sqrt{2}\) ) =2016 . tìm a,b
cho đa thức f(x)=x^2+bx+cx với b,c là những số hữu tỉ nhận \(x=\sqrt{5}-1\)là một nghiệm. Xác định đa thức f(x)
Cho đa thức: f(x) = x2 + bx + c.Biết b,c là các hệ số dương và f(x) có nghiệm. CMR: \(f\left(2\right)\ge9.\sqrt[3]{c}\)
Tìm các hằng số a, b, c sao cho đa thức f(x) =ax2 + bx + c thoả mãn điều kiện
f(n+1) – f(n) = n2 với mọi n = 1, 2, …
a)Tìm tất cả các cặp số nguyên tố (p,q) thỏa mãn \(p^2-5q^2=4\)
b) Cho đa thức \(f\left(x\right)=x^2+bx+c\). Biết b,c là các số dương và f(x) có nghiệm. Chứng minh \(f\left(2\right)\ge9\sqrt[3]{c}\)
Cho f(x)=\(ax^2+bx+c\) sao cho f(1);f(4);f(9) là các số hữu tỉ.CMR a;b;c là các số hữu tỉ
a) Cho \(x=\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\sqrt{3}+2}}\) .Tính GTBT: \(A=\frac{4\left(x+1\right)^{2017}-2x^{2016}+2x+1}{2x^2+3x}\)
b) Cho đa thức: \(f\left(x\right)=ãx^2+bx+c\).Biết f(x)>0 với mọi x thuộc R và a>0. Chứng minh rằng: \(\frac{5a-3b+2}{a-b+c}>1\)