Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
🙂T😃r😄a😆n😂g🤣

cho đa thức f(x) với các hệ số nguyên thoả mãn f(2019).f(2020) =2021.Hãy tìm nghiệm nguyên của đa thức  f(x)-2022

Nguyễn Việt Lâm
16 tháng 4 2021 lúc 17:55

Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)

\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên

\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)

Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ

\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn

Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:

\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)

\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)

Nhân vế với vế:

\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)

\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)

Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn

Mà vế trái lẻ \(\Rightarrow\) vô lý

Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên


Các câu hỏi tương tự
Nguyễn Kiều Trang
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Thái Ngô Hoàng
Xem chi tiết
le tho ninh
Xem chi tiết
Vinh Lê Thành
Xem chi tiết
Nguyễn Văn Duy
Xem chi tiết
469 cong ty CP
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
Dang Thi Nguyet
Xem chi tiết