f(4)*(4-4)=9*f(2)
=>f(4)*0=9*f(2)
=>f(2)=0
=>x=2 là nghiệm
f(-7)*0=(-9)*f(-9)
=>f(-9)=0
=>x=-9 là nghiệm
f(4)*(4-4)=9*f(2)
=>f(4)*0=9*f(2)
=>f(2)=0
=>x=2 là nghiệm
f(-7)*0=(-9)*f(-9)
=>f(-9)=0
=>x=-9 là nghiệm
Bài 4 (0,5 điểm): Cho đa thức f(x) thỏa mãn : (x - 4).f(x + 1) = ( 5 + x).f(x). Chứng tỏ đa thức f(x) có ít nhất 2 nghiệm
Bài 10. Cho đa thức f(x) thỏa mãn (x - 4) f(x + 1) = (x-1) f(x) Chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm
cho đa thức f(x) thỏa mãn ( x - 4 ) . f( x + 1 ) = ( x2 - 1 ) . f(x) . chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm .
bài nèy rất dễ các bạn thử lm nka .
a) Cho f(x) thỏa mãn: x.f(x-2) = (x-4) f(x)
Chứng minh rằng: Đa thức có ít nhất 2 nghiệm
b) Biết (x-1) . f(x) = (x+4) . f(x+8) với mọi x
Chứng minh rằng: f(x) có ít nhất 2 nghiệm
Câu 6: Cho đa thức f(x) thỏa mãn xf(x-2) =(x-4).f(x) với mọi x thuộc R. Chứng minh đa thức f(x) có ít nhất bốn nghiệm.
Cho đa thức f(x) thỏa mãn (x-2).f(x+1)=(x+3).f(x+4)
CMR f(x) có ít nhất 4 nghiệm
Cho đa thức f(x) thỏa mãn điều kiện:
x.f(x-2)=(x-4).f(x)
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện (x-1).f(x)= (x+4).f(x+8) . chứng minh rằng đa thức f(x) có ít nhất một nghiệm là số nguyên tố
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm