Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Tiến Đạt

Cho đa thức f(x)= ax3+bx2+cx+d với a là số nguyên dương, biết f(5)-f(4)= 2019, Chứng minh f(7)-f(2) là hợp số

zZz Cool Kid_new zZz
19 tháng 6 2020 lúc 10:48

Ta có:

\(f\left(5\right)=125a+25b+5c+d\)

\(f\left(4\right)=64a+16b+4c+d\)

\(f\left(7\right)=343a+49b+7c+d\)

\(f\left(2\right)=8a+4b+2c+d\)

Xét:

\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)

\(=61a+9b+c=2019\)

Khi đó:

\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)

Vậy ta có đpcm

Khách vãng lai đã xóa
Kiệt Vũ Tuấn
22 tháng 11 2023 lúc 21:17

không ra được đâu, 335 không chia hết cho 61, 5.61=305 chứ không phải bằng 335

Nguyễn Ngọc toản
25 tháng 2 lúc 11:44

* Ta có A(x)=ax^3+bx^2+cx+d

=>A(5)=125a+25b+5c+d

    A(4)=64a+16b+4c+d

    A(7)=343a+49b+7c+d

    A(2)=8a+4b+2c+d

+)Có A(5)-A(4)=(125a+25b+5c+d)-(64a+16b+4c+d)

    =>A(5)-A(4)=61a+9b+c

+) Xét A(7)-A(2)=(343a+49b+7c+d)-(8a+4b+2c+d)

      =>A(7)-A(2)=335a+45b+5c

                         =(61a+9b+c).5+30a

                         =(2022.5+30a) chia hết cho 2

         Vì a thuộc Z+ nên 2022.5+30a>2 nên A(7)-A(2) là hợp số

Nguyễn Ngọc toản
25 tháng 2 lúc 11:51

đúng ko vậy mn


Các câu hỏi tương tự
nightqueen
Xem chi tiết
Bình Lê Năng
Xem chi tiết
Bùi Quang Bảo Minh
Xem chi tiết
Hoàng Lê Huy
Xem chi tiết
Caroline Moore
Xem chi tiết
Nguyễn Văn Hiếu
Xem chi tiết
thien pham
Xem chi tiết
Đỗ Đức Hà
Xem chi tiết
👾thuii
Xem chi tiết