Cho đa giác đều có 2018 đỉnh. Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho?
A. C 1009 4
B. C 2018 2
C. C 1009 2
D. C 2018 4
Cho đa giác đều 20 cạnh. Chọn ngẫu nhiên 4 đỉnh của đa giác. Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
A. 8 969
B. 12 1615
C. 1 57
D. 3 323
Cho đa giác đều 2n đỉnh n ≥ 2 . Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là 4 trong 2n đỉnh của đa giác.
A. C 2 n 2
B. C n 4
C. C 2 n 4
D. C n 2
Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
A. 1 161
B. 45 1771
C. 2 77
D. 10 1771
Cho đa giác đều 20 cạnh. Lấy ngẫu nhiên 3 đỉnh của đa giác đều. Xác suất để 3 đỉnh lấy được là 3 đỉnh của một tam giác vuông không có cạnh nào là cạnh của đa giác đều bằng
A. 3 38
B. 7 114
C. 7 57
D. 5 114
Trên mặt phẳng cho hình 7 cạnh lồi. Xét tất cả các tam giác có đỉnh là các đỉnh của hình đa giác này. Hỏi trong số các tam giác đó, có bao nhiêu tam giác mà cả 3 cạnh của nó đểu không phải là cạnh của hình 7 cạnh đã cho ở trên?
A. 7
B. 9
C. 11
D. 13
Cho khối đa diện như hình vẽ bên. Trong đó ABC.A' B' C' là khối lăng trụ tam giác đều có tất cả các cạnh đều bằng 1, S.ABC khối chóp tam giác đều có cạnh bên SA=2/3. Mặt phẳng (SA' B' ) chia khối đa diện đã cho thành hai phần. Gọi V 1 là thể tích phần khối đa diện chứa đỉnh A, V 2 là thể tích phần khối đa diện không chứa đỉnh A. Mệnh đề nào sau đây đúng
A. 72 V 1 = 5 V 2
B. 3 V 1 = V 2
C. 24 V 1 = 5 V 2
D. 4 V 1 = 5 V 2
Cho đa giác đều (H) có 20 cạnh. Xét tam giác có 3 đỉnh được lấy từ các đỉnh của (H). Hỏi có bao nhiêu tam giác có đúng1 cạnh là cạnh của (H)
A. 320
B. 360
C. 380
D. 400
Cho đa giác đều 16 đỉnh. Hỏi có bao nhiêu tam giác vuông có ba đỉnh là ba đỉnh của đa giác đều đó?
A. 560
B. 112
C. 121
D. 128