Cho tam giác ABC có ba góc nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: Tam giác AMB = Tam giác DMC
b) Chứng minh: AB // CD
c) Vẽ AH vuông góc với BC (H thuộc BC). Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh: ME = MD.
d) Gọi K là trung điểm của ED. Chứng minh MK vuông góc với BC.
Cho ABC vuông tại A, gọi M là trung điểm của BC. Trên tia đối của tia
MA lấy điểm D sao cho MD = MA. Chứng minh rằng :
a) AMB = DMC
b) AB // CD
c) BD vuông góc với CD
Cho tam giác ABC có ba góc nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: Tam giác AMB = Tam giác DMC
b) Chứng minh: AB // CD
c) biết góc BAC = 90*. tính tổng sau : góc MDC+MAC, từ đó tính DCA
Cho tam giác ABC. Góc A = 90 độ có AB<AC.Gọi M là trung điểm của cạnh BC, trên tia đối của tia MA lấy điểm D sao cho MD=MA. Kẻ AH vuông góc với BC(H thuộc BC) trên tia AH lấy điểm E sao cho H là trung điểm của AE
a, CM: CD//AB và CD=BE
b, CD vuông góc với BC
c, AM = 1/2 BC
d, Cho AM=5cm, AC= 8cm. Tính AB?
Cho tam giác ABC vuông tại A. Lấy M là trung điểm BC. Trên tia đối của tia MA lấy điểm D để MA = MD. a) Chứng minh: ∆MAB = ∆MDC b) Chứng minh AB // CD c) Chứng minh: ∆ABC = ∆CDA và BC = AD d) Lấy E là trung điểm của AC. Kẻ MF ⊥ BD . Chứng minh E, M, F thẳng hàng.
cho tam giác vuông vuông tại a có góc c = 30 độ . gọi m là trung điểm của bc , trên tia đối của tia MA lấy điểm d sao cho MD = MA .
a ) CM : △AMB = △DMC
b) CM : △ABC = △CDA
c) CM : △AMB là tam giác đều
cho tam giác ABC có góc A = 90 độ. lấy M là trung điểm của BC. Trên tia đối của tia MA lấy D: MD= MA
a; cmr: tam giác AMB = tam giác DMC
b; tam giác ABC= tam giác CDA
c; BC= 2AM
Cho ∆ABC có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) C/m: ∆AMB = ∆DMC
b) C/m: AB //CD
Cho ∆ABC có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) C/m: ∆AMB = ∆DMC
b) C/m: AB //CD