Bài 1: Cho cấp số nhân có: u3 = 18 và u6 = -486.
Tìm số hạng đầu tiên và công bội q của cấp số nhân đó
Bài 2: Tìm u và q của cấp số nhân (un) biết:
Bài 3: Tìm cấp số nhân (un) biết cấp số đó có 4 số hạng có tổng bằng 360 và số hạng cuối gấp 9 lần số hạng thứ hai.
1) tìm x để 3 số x + 2; x + 4; 4x + 8 lập thành 1 cấp số nhân
2) tìm x để 3 số 1; 5; 2x + 4 lập thành 1 cấp số nhân
1) tìm x để 3 số x + 2; x + 4; 4x + 8 lập thành 1 cấp số nhân
2) tìm x để 3 số 1; 5; 2x + 4 lập thành 1 cấp số nhân
1) cho cấp số nhân \(\left(u_n\right)\) biết \(u_1=\dfrac{3}{2}\) và q = \(\dfrac{1}{2}\), số \(u_1=\dfrac{3}{512}\) là số hạng thứ mấy
2) tìm x để 3 số: 3;x + 2; 12 lập thành 1 cấp số nhân
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2048\) và \(q=\dfrac{5}{4}\) tính \(S_8=u_1+u_2+u_3...+u_8\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=-3\) và \(q=\dfrac{1}{2}\) tính \(S_1=u_1+u_2+u_3...+u_9+u_{10}\)
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2048\) và \(q=\dfrac{5}{4}\) tính \(S_8=u_1+u_2+u_3...+u_8\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=-1\\u_2=3\end{matrix}\right.\) tính tổng 10 số hạng đầu tiên của cấp số nhân
a) Tính tổng của cấp số nhân lùi vô hạn (un), với u1=\(\dfrac{2}{3}\),q=−\(\dfrac{1}{4}\)
b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số
Cho dãy số ( u n ) : u 1 = 0 u n + 1 = 2 u n + 3 u n + 4 v ớ i n ≥ 1
a) Lập dãy số ( x n ) với x n = u n - 1 u n + 3 . Chứng minh dãy số là cấp số nhân.
b) Tìm công thức tính x n , u n theo n.
I. Cho cấp số nhân (un) với u3 = 3 và u4 = 10.
1. Tính u1 và q
2. Viết số hạng tổng quát của cấp số nhân
II. Tính giới hạn của các hàm số sau
1. \(\lim\limits_{ }\dfrac{-3n^2+2n-2022}{3n^2-2022}\)
2. \(\lim\limits_{x\rightarrow2}\dfrac{x^2-5x+6}{x-2}\)
III. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, O là giao điểm của AC và BD, cạnh bên SA = SB = SC = a
1. Chứng minh SO \(\perp\) (ABCD)
2. Tính khoảng cách từ S đến (ABCD)
Giải giúp mình nhé. Cảm ơn các bạn rất nhiều.
1) cho dãy số 1;3;9;27;.. là 1 cấp số nhân, viết 3 số tiếp theo của dãy số
2) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=5\) và q = -2. Tính \(S_{11}\)