Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)
Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)
\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)
Đẳng thức xảy ra khi x = y = z = 1