Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Văn thành

cho các số x,y,z thỏa mãn 1/x +1/y+1/z=2 và 2/xy -1/z^2 =4 tính giá trị p=(x+2y+z)^2019

Khôi Bùi
30 tháng 4 2019 lúc 15:23

Đặt 1/x = a ; 1/y = b ; 1/z = c 

Ta có : \(a+b+c=2;2ab-c^2=4\)

\(a^2+b^2+c^2+2ab+2bc+2ac=2ab-c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2bc+2ac+c^2=0\)

\(\Leftrightarrow\left(a+c\right)^2+\left(b+c\right)^2=0\)

=> a + c = 0 và b + c = 0 

=> a = b = -c 

\(\Rightarrow\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)

Khi đó , ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-\frac{2}{z}+\frac{1}{z}=-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)

\(P=\left(x+2y+z\right)^2=4z^2\) \(=4.\left(-\frac{1}{2}\right)^2=1\)

Tham khảo nha 

Khôi Bùi
30 tháng 4 2019 lúc 15:24

\(\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\Rightarrow x=y=-z\) 


Các câu hỏi tương tự
Edogawa Conan
Xem chi tiết
Hoàng Nhật anh
Xem chi tiết
Uchiha Sasuke 1st
Xem chi tiết
Nguyễn Duy Thịnh
Xem chi tiết
Nguyễn Mạnh Hiếu
Xem chi tiết
Phạm Gia Huy
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
hung
Xem chi tiết
N.T.M.D
Xem chi tiết