Đáp án C
Ta có C m 2 = 153 ⇒ m = 18
Suy ra C 18 n = C 18 n + 2 ⇒ n = 18 - n + 2 ⇒ n = 8 ⇒ m + n = 26 .
Đáp án C
Ta có C m 2 = 153 ⇒ m = 18
Suy ra C 18 n = C 18 n + 2 ⇒ n = 18 - n + 2 ⇒ n = 8 ⇒ m + n = 26 .
Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C m 2 = 153 và C m n = C m n + 2 . Khi đó m+n bằng
A. 25
B. 27
C. 26
D. 23
Cho các số tự nhiên m n, thỏa mãn đồng thời các điều kiện C m 2 = 153 và C m n = C m n + 2 . Khi đó m + n bằng
A. 25
B. 24
C. 26
D. 23
Cho m, n là các số tự nhiên và p là số nguyên tố thỏa mãn .\(\frac{p}{m-1}=\frac{m+n}{p}\)
Tính A = p2 - n ta được A bằng mấy ??
Cho m, n là các số tự nhiên và p là số nguyên tố thỏa mãn .\(\frac{p}{m-1}=\frac{m+n}{p}\)
Tính A = p2 - n ta được A bằng mấy ??
Cho hàm số y = 2 x − 2 x − 2 có đồ thị là (C). M là điểm thuộc (C) sao cho tiếp tuyến của (C) tại M cắt hai đường tiệm cận của (C) tại hai điểm A, B thỏa mãn A B = 2 5 . Gọi S là tổng các hoành độ của tất cả các điểm M thỏa mãn bài toán. Giá trị của S bằng:
A. 8
B. 5
C. 7
D. 6
Kí hiệu A là tập hợp các số phức z đồng thời thỏa mãn hai điều kiện z - 1 = 34 và z + 1 + m i = z + m + 2 i (trong đó m ϵ R ). Gọi z 1 ; z 2 là hai số phức thuộc tập hợp A sao cho z 1 - z 2 là lớn nhất. Khi đó, hãy tính giá trị của z 1 + z 2
A. z 1 + z 2 = 10
B. z 1 + z 2 = 2
C. z 1 + z 2 = 2
D. z 1 + z 2 = 130
Cho số phức z thỏa mãn z − 2 + i z ¯ − 2 − i = 25 . Biết tập hợp các điểm M biểu diễn số phức w = 2 z ¯ − 2 + 3 i là đường tròn tâm I a ; b và bán kính c. Giá trị của a + b + c bằng
A. 10
B. 18
C. 17
D. 20
Cho các số thực a, b, m, n sao cho 2 m + n < 0 và thỏa mãn điều kiện log 2 a 2 + b 2 + 9 = 1 + log 2 3 a + 2 b 9 − m .3 − n .3 − 4 2 m + n + ln 2 m + n + 2 2 + 1 = 81
Tìm giá trị nhỏ nhất của biểu thức P = a − m 2 + b − n 2
A. 2 5 − 2.
B. 2.
C. 5 − 2.
D. 2 5 .
Cho số phức z thỏa mãn z - 2 + i z ¯ - 2 - i = 25 . Biết tập hợp các điểm M biểu diễn số phức w = 2 z ¯ - 2 + 3 i là đường tròn có tâm I(a;b) và bán kính c. Giá trị của a+b+c bằng
A. 17
B. 20
C. 10
D. 18