cho a;b;c;d là các số tự nhiên và \(a^2+ab+b^2=c^2+cd+d^2\)
chứng minh a+b+c+d là hợp số
Cho a,b,c,d là các số nguyên dương, thỏa mãn ab=cd.
Chứng minh rằng: \(a^{2016}+b^{2016}+c^{2016}+d^{2016}\)là hợp số
Cho a,b,c,d là các số nguyên dương, thỏa mãn ab=cd.
Chứng minh rằng: \(a^{2016}+b^{2016}+c^{2016}+d^{2016}\)là hợp số
Bài 1:Cho a,b,c là các số thực dương thỏa mãn $a^3+b^3+c^3−3abc=1$ .Tìm minP=$a^2+b^2+c^2$
Bài 2: Cho a,b,c,d thỏa mãn a>b>c>d và ac+bd=(b+d+a−c)(b+d−a+c) . Chứng minh ab+cd là hợp số
Bài 3:
1. Tìm hai số nguyên dương a và b thỏa mãn $a^2+b^2=[a,b]+7(a,b)$(với [a,b]=BCNN(a,b);(a,b)=UCLN(a,b))
2. Cho ΔABC thay đổi có AB=6,AC=2BC.Tìm giá trị lớn nhất của diện tích ΔABC.
Bài 4: Cho a,b,c là các số nguyên tố thỏa mãn: $20abc<30(a+b+c)<21abc$. Tìm a,b,c.
cho a,b,c,d là các số tự nhiên thỏa mãn : đôi 1 khác nhau và a2+d2=b2+c2=t.
chứng minh ab+cd và ac+bd không thể đồng thời là số nguyên tố
Cho a, b, c, d là các số hữu tỉ thỏa mãn a+b+c+d=0. Chứng minh rằng \(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\)là một số hữu tỉ
cho các số nguyên dương a, b, c, d sao cho a>b, c>d. chứng minh rằng nếu a+b+c+d=ab-cd thì a+c là hợp số
Cho 4 số nguyên thỏa mãn điều kiện a+b=c+d và ab+1=cd
Chứng minh c=d
Cho 4 số không âm a.b.c.d thỏa mãn ab+bc+cd+da=1. Chứng minh rằng:
\(\frac{a^3}{b+c+d}+\frac{b^3}{c+d+a}+\frac{c^3}{d+a+b}+\frac{d^3}{a+b+c}\ge\frac{1}{3}\)
Cho các số nguyên dương a,b,c,d sao cho a>b, c>d.Chứng minh rằng: a+b+c+d=ab-cd thì a+c là hợp số.