Cho các số thực dương thỏa mãn điều kiện x^2+y^2+z^2<=2018 Tìm GTNN và GTLN A=x+y+z+xy+xz+yz
cho 3 số thực dương x,y,z thỏa mãn x+y+z= 3
tìm GTLN của biểu thức P= \(\sqrt{xy+3xz}\)+ \(\sqrt{\frac{y^2+yz}{2}}\)
cho x,y ,z là 3 số dương thỏa mãn x +y +z = 2
tìm GTLN của xy , xz ,yz
Cho các số thực dương x,y,z thỏa mãn : \(x^2+y^2+z^2=3xyz\)
Tìm GTLN của biểu thức \(P=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)
Cho ba số thực dương x, y, z thỏa mãn: \(x+2y+3z=2\). Tìm GTLN của biểu thức: \(S=\sqrt{\dfrac{xy}{xy+3z}+}\sqrt{\dfrac{3yz}{3yz+x}+}\sqrt{\dfrac{3xz}{3xz+4y}}\)
Cho các số thực dương x,y,z thỏa mãn xy+yz+xz=2020
Tìm GTLN của \(A=\sqrt{\frac{yz}{x^2+2020}}+\sqrt{\frac{xy}{y^2+2020}}+\sqrt{\frac{xz}{z^2+2020}}.\)
Nhìn đề bài thấy sai sai :)) Bn nào lm giúp mà phải sửa đề thì cứ sửa nhé. Tks
cho x,y,z là các số thực thỏa mãn x^2 + y^2 + z^2 =1.
a, Tim min và max của xy + yz - xz
b,CMR ko tồn tại bộ số hữu tỉ (x,y,z) để đạt được giá trị lớn nhất và nhỏ nhất của xy+yz-xz
Cho x,y,z là các số thực dương thỏa mãn: x^2+y^2+z^2=2.Tìm GTNN và GTLN của P=\(\dfrac{x}{2+yz}+\dfrac{y}{2+zx}+\dfrac{z}{2+xy}\)
Cho x,y,z thỏa mãn \(x^2+y^2+z^2+2xyz=1\)
Tìm GTLN của \(P=xy+yz+xz-2xyz\)