Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiệt Nguyễn

Cho các số thực dương a,b,c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\). CMR: 

\(\frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca+b}}\ge3\sqrt[6]{abc}\)

Giải:

 \(GT\Leftrightarrow ab+bc+ca\ge abc\)

\(\Rightarrow ab\le\frac{ab+bc+ca}{c}\)

\(\Rightarrow\frac{a+b}{\sqrt{ab+c}}\ge\frac{a+b}{\sqrt{\frac{ab+bc+ca}{c}+c}}=\frac{\left(a+b\right)\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Tương tự rồi cộng lại: \(VT\ge\frac{\left(a+b\right)\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}+\frac{\left(b+c\right)\sqrt{a}}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{\left(c+a\right)\sqrt{c}}{\sqrt{\left(b+a\right)\left(b+c\right)}}\)\(\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[6]{abc}\)

Lần sau mấy bạn hỏi bài thì đăng lên nhé!

Phạm Việt Phú
4 tháng 2 2021 lúc 18:57

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

Khách vãng lai đã xóa
nguyễn phương thảo
4 tháng 2 2021 lúc 19:09

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Vũ Đức
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Người Bí Ẳn
Xem chi tiết
Đoàn Thanh Bảo An
Xem chi tiết
Kurosaki Akatsu
Xem chi tiết
Itachi Uchiha
Xem chi tiết
Quốc Lê Minh
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Chỉ Yêu Mình Em
Xem chi tiết