Cho a;b;c là các số thực dương thỏa mãn abc=1 .Chứng minh;
\(\frac{a}{\left(a+1\right)^2}+\frac{b}{\left(b+1\right)^2}+\frac{c}{\left(c+1\right)^2}-\frac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\) <=\(\frac{1}{4}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3abc. Chứng minh rằng :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left[\frac{a^4}{\left(ab+1\right)\left(ac+1\right)}+\frac{b^4}{\left(bc+1\right)\left(ab+1\right)}+\frac{c^4}{\left(ca+1\right)\left(bc+1\right)}\right]\ge\frac{27}{4}\)
Cho a,b,c là các số thực dương thỏa mãn abc=1. Chứng minh:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
cho a,b,c là các số thực dương thỏa mãn abc=1. Chứng minh rằng \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho các số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)
cho a;b;c là các số thực dương thỏa mãn abc=1.Tìm Min của \(P=\frac{a^2}{\left(a+1\right)\left(b+1\right)bc}+\frac{b^2}{\left(b+1\right)\left(c+1\right)ca}+\frac{c^2-a^2b-ab-a-1}{\left(c+1\right)\left(a+1\right)ab}\)
Cho a,b,c là các số thực dương thỏa mãn \(abc=1\). Chứng minh rằng:
\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
Cho 3 số thực dương a,b,c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
cho a;b;c là các số thực dương thỏa mãn abc=1
Tìm Min của P=\(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\)