theo đề ta có x=50 thuộc 90=70
-6869^=67
-78Y^7
theo đề ta có x=50 thuộc 90=70
-6869^=67
-78Y^7
Cho a, b, c là ba số dương thỏa mãn: \(\dfrac{\text{2b+c-a}}{a}=\dfrac{\text{2c-b+a}}{b}=\dfrac{\text{ 2a+b-c}}{c}\)
Tính giá trị biểu thức: P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3a-2c\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)} \)
cho a,b,c là 3 số dương thỏa mãn : 3a-b /c = 3b - c /a = 3c -a / b
tính giá trị biểu thức A= a/2b-3c + b/2c-3a + c/2a-3b
cho các số a,b,c thỏa mãn 3a-2b/4=2c-4a/3=4b-3c/2 tính giá trị biểu thức A=3a+2b-c/3a-2b+c + 2a^2-b^2+c^2/2a^2+b^2-c^2
Cho các số nguyên dương a,b,c thỏa mãn \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\)
Chứng minh rằng tổng (a+b+c) chia hết cho 3
Cho 3 số dương a,b,c thỏa măn 2a+b-c/c = 2b+c-a/a = 2c+a-b/b
Tính A= (3a-c)(3b-a)(3c-b)/(3a-2b)(3b-2c)(3c-2a)
Cho các số a,b,c,d nguyên dương đôi một khác nhau thỏa mãn :
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
CMR : abcd là 1 số chính phương
Cho 3 số dương a, b, c thỏa mãn : \(\frac{2a+b-c}{c}=\frac{2b+c-a}{a}=\frac{2c+a-b}{b}\)
Tính \(A=\frac{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}\)
Cho các số thực a,b,c thỏa mãn ( b+2c ) ( c+2a ) ( c+2b ) khác 0 và \(\frac{a}{b+2c}\)=\(\frac{b}{c+2a}\)=\(\frac{c}{a+2b}\). Chứng minh rằng a=b=c
cho các số dương a;b;c;d thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)khi đó giá trị của biểu thức A=\(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)