Từ giả thiết a+b+c=abc và a2 = bc => b + c = a3 - a => b và c là 2 nghiệm của phương trình:
\(x^2-\left(a^3-a\right)x+a^2=0\) (1)
\(\Delta=\left(a^3-a\right)^2-\left(2a\right)^2=\left(a^3+a\right)\left(a^3-3a\right)=a^2\left(a^2+1\right)\left(a^2-3\right)\)
vì (1) có nghiệm nên \(\Delta=a^2\left(a^2+1\right)\left(a^2-3\right)\ge0\)
Mà \(a^2>0;a^2+1>0\) nên \(a^2-3\ge0\)hay \(a^2\ge3\)