\(\hept{\begin{cases}3a-2b\inℚ\\2a+5b\inℚ\end{cases}}\Rightarrow5\left(3a-2b\right)+2\left(2a+5b\right)=19a\inℚ\Leftrightarrow a\inℚ\)
\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).
Ta có đpcm.
\(\hept{\begin{cases}3a-2b\inℚ\\2a+5b\inℚ\end{cases}}\Rightarrow5\left(3a-2b\right)+2\left(2a+5b\right)=19a\inℚ\Leftrightarrow a\inℚ\)
\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).
Ta có đpcm.
Cho các số thực a, b thỏa mãn 3a − 2b và 2a + 5b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
Cho các số thực a, b thỏa mãn a − 2b và 3a + 4b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
Cho các số thực a, b thỏa mãn a − 2b và 3a + 4b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
Cho các số thực a, b thỏa mãn a − 2b và 3a + 4b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
Cho các số thực a, b thỏa mãn a + 3b và 3a − 2b đều là các số hữu tỷ. Chứng minh a, b đều
là các số hữu tỷ. ^^
Bài 3
Xét xem các số a,b có thể là số hữu tỷ không nếu
a, a + b và a - b đều là số hữu tỷ
b, 2a + b và 3a - 2b đều là số hữu tỷ
Cho các thực a,b thoả mãn 2a+3b và 5a-4b đều là các số hữu tỉ. Chứng minh rằng a,b đều là các số hữu tỉ
Cho các số thực a,b,c thỏa mãn a + b, b + c, c + a đều là các số hữu tỉ. Chứng minh rằng a, b, c là các số hữu tỉ
Cho hai số hữu tỷ a, b thỏa mãn |a + b| = |a − b|. Chứng minh a = 0 hoặc b = 0.