Có bao nhiêu cặp số thực (x;y) thỏa mãn: ba số 4x-2y, 3x+y, x+6y theo thứ tự lập thành một cấp số cộng và ba số (y+2)2, xy-1, (x+1)2 theo thứ tự lập thành cấp số nhân
A. 1
B. 2
C. 3
D. 0
Biết rằng x; y là các số thực sao cho các số x; 2x- 3; y theo thứ tự lập thành một cấp số cộng và các số x 2 ; xy − 6 y ; y 2 theo thứ tự lập thành một cấp số nhân. Cặp số (x;y) là
A. 7 ; 3 7 và − 7 ; − 3 7
B. - 7 ; 3 7 và 7 ; − 3 7
C. 2 ; 3 2 và − 2 ; − 3 2
D. - 2 ; 3 7 và 2 ; 3 7
Biết x,y, x+4 theo thứ tự lập thành cấp số cộng và x+1, y+1, 2y+2 theo thứ tự lập thành cấp số nhân với x, y là số thực dương. Giá trị của x+y là:
A. 3
B. 2
C. 5
D. 4
Ba số x, y, z theo thứ tự lập thành một cấp số nhân có công bội q ≠ 1 . Đồng thời, các số x, 2y, 3z theo thứ tự đó lập thành một cấp số cộng có công sai khác 0. Khi đó công bội q bằng:
A. - 1 3
B. 3
C. 1 3
D. -3
Với các số thực dương x, y. Ta có 8 x , 4 4 , 2 theo thứ tự lập thành một cấp số nhân và các số log 2 45 , log 2 y , log 2 x theo thứ tự lập thành cấp số cộng. Khi đó y bằng:
A. 225.
B. 15.
C. 105.
D. 150
Ba số x,y,x (y>0) theo thứ tự lập thành một cấp số cộng tăng. Giả sử x 2 , y 2 , z 2 theo thứ tự đó lập thành một cấp số nhân. Khi đó công bội của cấp số nhân đó bằng
A. 2 - 1
B. 2 + 1
C. 3 - 2 2
D. 3 + 2 2
Cho ba số thực dương x,y,z theo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a a ≠ 1 thì log a x , log a y , log a 3 z theo thứ tự lập thành cấp số cộng.
Tính giá trị biểu thức P = 1959 x y + 2019 y z + 60 z x .
A. 2019 2
B. 60
C. 2019
D. 4038
Cho ba số thực x, y, z theo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a a ≠ 1 thì log a x , log a y , log a 3 z theo thứ tự lập thành cấp số cộng.
Tính giá trị biểu thức P = 1959 x y + 2019 y z + 60 z x
A. 2019 2
B. 60
C. 2019
D. 4038
Cho ba số dương a, b, c theo thứ tự lập thành cấp số cộng. Giá trị lớn nhất của biểu thức P = ( a 2 + 8 b c ) + 3 ( 2 a + c ) 2 + 1 có dạng x y ( x , y ∈ N ) . Hỏi x+y bằng bao nhiêu
A. 9
B. 11
C. 13
D. 7